В какую сторону вращается трехфазный двигатель

В какую сторону вращается трехфазный двигатель

Принцип работы асинхронного двигателя

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя

Здравствуйте, уважаемые посетители сайта http://zametkielectrika.ru.

Электрические машины переменного тока нашли широкое распространение, как в сфере промышленности (шаровые мельницы, дробилки, вентиляторы, компрессоры), так и в домашних условиях (сверлильный и наждачный станки, циркулярная пила).

Основная их часть является бесколлекторными машинами, которые в свою очередь разделяются на асинхронные и синхронные.

Асинхронные и синхронные электрические машины обладают одним замечательным свойством под названием обратимость, т.е. они могут работать как в двигательном режиме, так и в генераторном.

Но чтобы дальше перейти к более подробному их рассмотрению и изучению, необходимо знать принцип их работы. Поэтому в сегодняшней статье я расскажу Вам про принцип работы асинхронного двигателя. После прочтения данного материала Вы узнаете про электромагнитные процессы, протекающие в электродвигателях.

Принцип работы трехфазного асинхронного двигателя

С устройством асинхронного двигателя мы уже знакомились, поэтому повторяться второй раз не будем. Кому интересно, то переходите по ссылочке и читайте.

При подключении асинхронного двигателя в сеть необходимо его обмотки соединить звездой или треугольником. Если вдруг на выводах в клеммнике отсутствует маркировка, то необходимо самостоятельно определить начала и концы обмоток электродвигателя.

При включении обмоток статора асинхронного двигателя в сеть трехфазного переменного напряжения образуется вращающееся магнитное поле статора, которое имеет частоту вращения n1. Частота его вращения определяется по следующей формуле:

  • f — частота питающей сети, Гц
  • р — число пар полюсов

Это вращающееся магнитное поле статора пронизывает, как обмотку статора, так и обмотку ротора, и индуцирует (наводит) в них ЭДС (Е1 и Е2). В обмотке статора наводится ЭДС самоиндукции (Е1), которая направлена навстречу приложенному напряжению сети и ограничивает величину тока в обмотке статора.

Как Вы уже знаете, обмотка ротора замкнута накоротко, у электродвигателей с короткозамкнутым ротором, или через сопротивление, у электродвигателей с фазным ротором, поэтому под действием ЭДС ротора (Е2) в ней появляется ток. Так вот взаимодействие индуцируемого тока в обмотке ротора с вращающимся магнитным полем статора создает электромагнитную силу Fэм.

Направление электромагнитной силы Fэм можно легко найти по правилу левой руки.

Правило левой руки для определения направления электромагнитной силы

На рисунке ниже показан принцип работы асинхронного двигателя. Полюса вращающегося магнитного поля статора в определенный период обозначены N1 и S1. Эти полюса в нашем случае вращаются против часовой стрелки. И в другой момент времени они будут находится в другом пространственном положении. Т.е. мы как бы зафиксировали (остановили) время и видим следующую картину.

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя

Токи в обмотках статора и ротора изображены в виде крестиков и точек. Поясню. Если стоит крестик, то значит ток в этой обмотке направлен от нас. И наоборот, если точка, то ток в этой обмотке направлен к нам. Пунктирными линиями показаны силовые магнитные линии вращающегося магнитного поля статора.

Устанавливаем ладонь руки так, чтобы силовые магнитные линии входили в нашу ладонь. Вытянутые 4 пальца нужно направить вдоль направления тока в обмотке. Отведенный большой палец покажет нам направление электромагнитной силы Fэм для конкретного проводника с током.

На рисунке показаны только две силы Fэм, которые создаются от проводников ротора с током, направленным от нас (крестик) и к нам (точка). И как мы видим, электромагнитные силы Fэм пытаются повернуть ротор в сторону вращения вращающегося магнитного поля статора.

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен от нас (крестик).

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_3

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен к нам (точка).

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_4

Совокупность этих электромагнитных сил от каждого проводника с током создает общий электромагнитный момент М, который приводит во вращение вал электродвигателя с частотой n.

Отсюда и произошло название асинхронный двигатель. Частота вращения ротора n всегда меньше частоты вращающегося магнитного поля статора n1, т.е. отстает от нее. Для определения величины отставания введен термин «скольжение», который определяется по следующей формуле:

Выразим из этой формулы частоту вращения ротора:

Пример расчета частоты вращения двигателя

Например, у меня есть двигатель типа АИР71А4У2 мощностью 0,55 (кВт):

  • число пар полюсов у него равно 4 (2р=4, р=2)
  • частота вращения ротора составляет 1360 (об/мин)

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_7

Определим частоту вращения поля статора этого двигателя при частоте питающей сети 50 (Гц):

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_8

Найдем величину скольжения для этого двигателя:

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_9

Кстати, направление движения вращающегося магнитного поля статора, а следовательно, и направление вращения вала электродвигателя, можно изменить. Для этого необходимо поменять местами любые два вывода источника питающего трехфазного напряжения. Об этом я упоминал Вам в статьях про реверс электродвигателя и чередование фаз.

Принцип работы асинхронного двигателя. Выводы

Зная принцип работы асинхронного двигателя, можно сделать вывод, что электрическая энергия преобразуется в механическую энергию вращения вала электродвигателя.

Частота вращения магнитного поля статора, а следовательно и ротора, напрямую зависит от числа пар полюсов и частоты питающей сети. Если число пар полюсов ограничивается типом двигателя (р = 1, 2, 3 и 4), то частоту питающей сети можно изменить в большем диапазоне, например, с помощью частотного преобразователя.

Если в нашем примере частоту питающей сети увеличить всего на 10 (Гц), то частота вращения магнитного поля статора увеличится на 300 (об/мин).

Опыт по установке и монтажу частотных преобразователей у меня есть, но не большой. Несколько лет назад на городском водоканале мы проводили замену двух высоковольтных двигателей насосов холодной воды на низковольтные двигатели с частотными преобразователями. Но это уже отдельная тема для разговора. Сейчас покажу Вам несколько фотографий.

Вот фотография старого высоковольтного двигателя напряжением 6 (кВ).

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_10

А это новые двигатели напряжением 400 (В), установленные вместо старых высоковольтных.

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_11

Вот шкафы частотных преобразователей. На каждый двигатель свой шкаф. К сожалению, изнутри сфотографировать не успел.

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_12

Подписывайтесь на рассылку новостей с моего сайта, чтобы не пропустить самое интересное. В ближайшее время я расскажу Вам про пуск и способы регулирования частоты вращения трехфазных асинхронных двигателей двигателей, схемы их подключения и многое другое.

12. Электрические машины переменного тока

12.2. Асинхронные двигатели.
Конструкция, принцип действия

Скольжение не может быть равным нулю, так как при одинаковых скоростях поля и ротора прекратилось бы наведение токов в роторе и, следовательно, отсутствовал бы электромагнитный вращающий момент.
Вращающий электромагнитный момент уравновешивается противодействующим тормозным моментом Мэм = М2.
С увеличением нагрузки на валу двигателя тормозной момент становится больше вращающего, и скольжение увеличивается. Вследствие этого, возрастают индуктированные в роторной обмотке ЭДС и токи. Вращающий момент увеличивается и становится равным тормозному моменту. Вращающий момент может возрастать с увеличением скольжения до определенного максимального значения, после чего при дальнейшем увеличении тормозного момента вращающий момент резко уменьшается, и двигатель останавливается.
Скольжение заторможенного двигателя равно единице. Говорят, что двигатель работает в режиме короткого замыкания.
Частота вращения ненагруженного асинхронного двигателя n2 приблизительно равна синхронной частоте n1. Скольжение ненагруженного двигателя S &asimp; 0. Говорят, что двигатель работает в режиме холостого хода.
Скольжение асинхронной машины, работающей в режиме двигателя, изменяется от нуля до единицы.
Асинхронная машина может работать в режиме генератора. Для этого ее ротор необходимо вращать сторонним двигателем в направлении вращения магнитного поля статора с частотой n2 > n1. Скольжение асинхронного генератора .
Асинхронная машина может работать в режиме электромашинного тормоза. Для этого необходимо ее ротор вращать в направлении, противоположном направлению вращения магнитного поля статора.
В этом режиме S > 1. Как правило, асинхронные машины используются в режиме двигателя. Асинхронный двигатель является наиболее распространенным в промышленности типом двигателя. Частота вращения поля в асинхронном двигателе жестко связана с частотой сети f1 и числом пар полюсов статора. При частоте f1 = 50 Гц существует следующий ряд частот вращения.

P1234
n1, об/мин3 00015001000750

Из формулы (12.1) получим

Скорость поля статора относительно ротора называется скоростью скольжения

Частота тока и ЭДС в роторной обмотке

Асинхронная машина с заторможенным ротором работает как трансформатор. Основной магнитный поток индуктирует в статорной и в неподвижной роторной обмотках ЭДС Е1 и Е.

где Фm — максимальное значение основного магнитного потока, сцепленного со
статорной и роторной обмотками;
W1 и W2 — числа витков статорной и роторной обмоток;
f1 — частота напряжения в сети;
K01 и K02 — обмоточные коэффициенты статорной и роторной обмоток.

Чтобы получить более благоприятное распределение магнитной индукции в воздушном зазоре между статором и ротором, статорные и роторные обмотки не сосредоточивают в пределах одного полюса, а распределяют по окружностям статора и ротора. ЭДС распределенной обмотки меньше ЭДС сосредоточенной обмотки. Этот факт учитывается введением в формулы, определяющие величины электродвижущих сил обмоток, обмоточных коэффициентов. Величины обмоточных коэффициентов несколько меньше единицы.
ЭДС в обмотке вращающегося ротора

Ток ротора работающей машины

где R2 — активное сопротивление роторной обмотки;
х2 — индуктивное сопротивление роторной обмотки.

где х— индуктивное сопротивление заторможенного ротора.

12.3. Вращающий момент асинхронного двигателя

На ротор и полюсы статора действуют электромагнитные вращающие
моменты, одинаковые по величине и направленные в противоположные стороны.
Мощность, необходимая для вращения статорных полюсов с синхронной частотой,

где — угловая скорость.

Механическая мощность, развиваемая ротором,

где — угловая скорость ротора.

где РЭ2 — электрические потери в роторной обмотке;
m2 — число фаз обмотки ротора;
R2 — активное сопротивление обмотки ротора;
I2 — ток ротора.

Вращающий момент, с учетом (12.6),

где , КТ — коэффициент трансформации двигателя с заторможенным ротором.

где U1 — напряжение сети.

На рис. 12.5 изображена зависимость электромагнитного момента от скольжения в виде сплошной линии.

Пусть исполнительный механизм, приводимый во вращение данным двигателем, создает противодействующий тормозной момент М2.
На рис.12.5 имеются две точки, для которых справедливо равенство Мэм = М2 ;
это точки а и в .
В точке а двигатель работает устойчиво. Если двигатель под влиянием какой-либо причины уменьшит частоту вращения, то скольжение его возрастет, вместе с ним возрастет вращающий момент. Благодаря этому частота вращения двигателя повысится, и вновь восстановится равновесие Мэм = М2 ;.
В точке в работа двигателя не может быть устойчива: случайное отклонение частоты вращения приведет либо к остановке двигателя, либо к переходу его в точку а .
Следовательно, вся восходящая ветвь характеристики является областью устойчивой работы двигателя, а вся нисходящая часть — областью неустойчивой работы. Точка б , соответствующая максимальному моменту, разделяет области устойчивой и неустойчивой работы.
Максимальному значению вращающего момента соответствует критическое скольжение Sk . Скольжению S = 1 соответствует пусковой момент. Если величина противодействующего тормозного момента М2 больше пускового МП, двигатель при включении не запустится, останется неподвижным.
Максимальный момент найдем следующим образом. Сначала определим значение критического скольжения, при котором функция Мэм будет максимальной. Для этого первую производную функции по скольжению S от выражения (12.8) приравняем нулю.

Подставив значение критического скольжения в формулу (12.8), получим

Из формул (12.8), (12.9), (12.10) видно:

  1. величина максимального вращающего момента не зависит от активного сопротивления цепи ротора;
  2. с увеличением активного сопротивления цепи ротора максимальный вращающий момент, не изменяясь по величине, смещается в область больших скольжений (см. кривая 1 рис. 12,5);
  3. вращающий момент пропорционален квадрату напряжения сети.

12.4. Регулирование частоты вращения асинхронных двигателей.
Реверсирование асинхронного двигателя

Из формулы (12.2) получим

Из формулы (12.11) видно, что частоту вращения асинхронного двигателя можно менять тремя способами:

  1. изменением частоты питающего напряжения;
  2. изменением числа полюсов двигателя. Для этого в пазы статора закладывают обмотку, которую можно переключать на различное число полюсов;
  3. изменением скольжения. Этот способ можно применить в асинхронных двигателях с фазным ротором. Для этого в цепь ротора включают регулировочный реостат. Увеличение активного сопротивления цепи ротора приводит к увеличению скольжения от Sa к Sг (см. рис. 12.5), а, следовательно, и к уменьшению частоты вращения двигателя.

Асинхронные двигатели имеют простую конструкцию и надежны в эксплуатации. Недостатком асинхронных двигателей является трудность регулирования их частоты вращения.
Чтобы реверсировать трехфазный асинхронный двигатель (изменить направление вращения двигателя на противоположное), необходимо поменять местами две фазы, то есть поменять местами два любых линейных провода, подходящих к обмотке статора двигателя.

12.5. Однофазные асинхронные двигатели

Однофазный двигатель имеет одну обмотку, расположенную на статоре. Однофазная обмотка, питаемая переменным током, создаст пульсирующее магнитное поле. Поместим в это поле ротор с короткозамкнутой обмоткой. Ротор вращаться не будет. Если раскрутить ротор сторонней механической силой в любую сторону, двигатель будет устойчиво работать.
Объяснить это можно следующим образом.
Пульсирующее магнитное поле можно заменить двумя магнитными полями,
вращающимися в противоположных направлениях с синхронной частотой n1 и имеющими амплитуды магнитных потоков, равные половине амплитуды магнитного потока пульсирующего поля. Одно из магнитных полей называется прямовращающимся, другое — обратновращающимся. Каждое из магнитных полей индуктирует в роторной обмотке вихревые токи. При взаимодействии вихревых токов с магнитными полями образуются вращающие моменты, направленные встречно друг другу.
На рис. 12.7 изображены зависимости момента от прямого поля М’, момента от
обратного поля М» и результирующего момента М в функции скольжения М = М’ — M».

Оси скольжений направлены встречно друг другу.
В пусковом режиме на ротор действуют вращающие моменты, одинаковые по величине и противоположные по направлению.
Раскрутим ротор сторонней силой в направлении прямовращающегося магнитного поля. Появится избыточный (результирующий) вращающий момент, разгоняющий ротор до скорости, близкой к синхронной. При этом скольжение двигателя относительно прямовращающегося магнитного поля

Скольжение двигателя относительно обратновращающегося магнитного поля

Рассматривая результирующую характеристику, можно сделать следующие выводы:

Как определить в какую сторону вращается двигатель?

По стандарту SAE вращение вала двигателя должно происходить против часовой стрелки (CCW — counterclockwise), если смотреть на двигатель со стороны маховика (по часовой стрелке, если смотреть на двигатель спереди).

Как определить в какую сторону вращается электродвигатель?

двигателях условно принято правое вращение, если вал вращается по часовой стрелке со стороны двигателя! Можете это проверить, посмотрев как закручены на создание определённого направления потока (в какую сторону) лопасти.

Как определить направление вращения двигателя?

Для определения направления вращения автомобильного (тракторного, комбайнового) двигателя наблюдатель должен располагаться на воображаемом продолжении оси вала, со стороны, противоположной фланцу вала основного отбора мощности.

Как определить правое или левое вращение?

Есть несколько простых правил, запомнив которые визуально определить вращение насоса НШ не составит труда: «Левое» вращение — это вращение против часовой стрелки, если мы смотрим на вал насоса. «Правое», соответственно, вращение по часовой стрелке, смотреть также со стороны вала насоса.

Что значит вращение правое?

Большинство двигателей (более 90%), которые крутятся в станках, имеют «правое вращение». … Это значит, что если двигателю посмотреть «в зад», то есть на крыльчатку, он будет вращаться по часовой стрелке. Пояснение к прямому направлению вращения Если со стороны вала — против часовой.

Как заставить однофазный двигатель крутится в обратную сторону?

Изменить направление вращения однофазный асинхронный двигатель в другую сторону – против часовой стрелки. Для этого достаточно переподключить одну из обмоток однофазного асинхронного двигателя – либо рабочую либо пусковую.

Каким образом можно изменить направление вращения подвижной части электродвигателя?

Измените направление вращения подвижной части электродвигателя, изменив направление тока в цепи. Подвижная часть электродвигателя называется якорем. Электромагнит, создающий магнитное поле, в котором вращается якорь, называется индуктором.

Как крутиться двигатель?

По стандарту SAE вращение вала двигателя должно происходить против часовой стрелки (CCW — counterclockwise), если смотреть на двигатель со стороны маховика (по часовой стрелке, если смотреть на двигатель спереди).

Как определяется направление вращения якоря двигателя постоянного тока?

Медленно поворачивая якорь двигателя в нужном направлении (по часовой стрелке или против нее), замечают наибольшую величину отклонения стрелки прибора. … Направление вращения двигателя будет соответствовать направлению вращения при опыте.

Как изменить направление вращения коллекторного двигателя переменного тока?

Чтобы изменить направление вращения, достаточно поменять полярность только в обмотке возбуждения или только на щетках ротора. Для осуществления реверса двигателей большой мощности полярность следует менять на якоре.

Как определить вращение насоса?

Как определить вращение насоса НШ

  1. «Левое» вращение — это вращение против часовой стрелки, если мы смотрим на вал насоса. …
  2. Если в маркировке насоса НШ, нанесенной на корпусе, есть буква «Л» , то вращение насоса — левое.
  3. Ставим насос НШ валом вверх, входным (всасывающим) отверстием поворачиваем к себе.

Как определить в какую сторону крутится НШ?

В выборе насоса помогает маркировка на корпусе — внимательно осмотри корпус насоса НШ и найди соответствующую маркировку.

  1. Если в маркировке присутствует буква Л — например НШ-100А-3Л — направление вращения левое.
  2. Если в маркировке нет буквы Л — например НШ-100А-3, направление вращения правое.

Как определить вращение вакуумного насоса?

Для определения вращения насоса нужно посмотреть на направление стрелки, нарисованной на корпусе. Взгляд со стороны торца вала поможет определить вращение, если вал вращается по движению часовой стрелки, то вращение правое, если против часовой стрелки — левое.

Как это по часовой стрелки?

Вращение, при котором верхний для наблюдателя край вращающегося предмета движется направо (а нижний налево), называется вращением по часовой стрелке (устар. по солнцу, посолонь). … Вращение по часовой стрелке превращается во вращение против, если взглянуть на тело с противоположной стороны.

Что означает выражение вращаться против часовой стрелки?

Направление вращения принято обозначать с помощью выражений «по часовой стрелке»(движение из верхней точки идет направо вниз) или «против часовой стрелки»(из верхней точки налево вниз). Так движется стрелка обычных часов. А за образец ее движения взято перемещение тени в солнечных часах.

Почему нужно ходить по часовой стрелке?

Все легкоатлеты бегают против часовой стрелки по стандарту IAAF (Международная Ассоциация Легкоатлетических Федераций). … Поэтому правой ногой удобнее отталкиваться от земли, уводя тело налево — то есть пробегая скруглённые участки дистанции именно против часовой стрелки.

Читайте также  Honda civic какой двигатель подойдет
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector