Статические характеристики асинхронных ...

Статические характеристики асинхронных …

Механические характеристики электроприводов

Механические характеристики электроприводовВыбор электропривода определяется требованиями рабочей машины. Электропривод должен обеспечить выполнение рабочей машиной заданной технологии при всех возможных режимах: пуска, приема и сброса нагрузки, торможения, изменения скорости, постоянной нагрузки. Характер протекания этих режимов в первую очередь определяется механическими свойствами двигателя и рабочей машины . Одним из основных критериев оценки механических свойств как двигателя, так и.рабочей машины служат их механические характеристики .

Механические характеристики электродвигателей

Механической характеристикой электродвигателя называется зависимость скорости вращения вала от развиваемого двигателем момента ω = φ (Мд) или n = f (Мд), где ω — угловая скорость вращения вала, рад/с, n — скорость вращения вала, об/мин.

Механическая характеристика двигателя называется естественной , если зависимость n = f (М) получена при номинальных параметрах питающей сети, нормальной схеме включения и без добавочных сопротивлений в цепи двигателя.

При наличии добавочных сопротивлений или питании двигателя от сети с напряжением или частотой, отличными от номинальных, механические характеристики двигателя будут называться искусственными . Очевидно, что искусственных характеристик двигатель имеет бесчисленное множество, а естественную — только одну.

Большинство электродвигателей под нагрузкой при увеличении момента снижает скорость вращения. Характеристику в этом случае называют падающей . Степень изменения скорости двигателя при изменении момента оценивают так называемой жесткостью механической характеристик и, которую определяют отношением α = Δ М/Δω или α = Δ М/Δ n

Различные виды механических характеристик

Рис. 1. Различные виды механических характеристик: а — электродвигателей, б — производственных машин.

Величины изменения момента и падения скорости при определении жесткости берут обычно в относительных единицах. Это дает возможность сравнивать характеристики двигателей различного вида.

В зависимости от степени жесткости все механические характеристики двигателей подразделяют на следующие группы.

1. Абсолютно жесткие характеристики с величиной жесткости α = ∞ . Такие механические характеристики (кривая 1, рис. 1, а) со строго постоянной скоростью вращения имеют синхронные двигатели.

2. Жесткие характеристики со сравнительно небольшим падением скорости при увеличении момента и α = 40 — 10. К этой группе относятся естественные характеристики двигателей постоянного тока с независимым возбуждением (кривая 2) и характеристики асинхронных двигателей в пределах линейного участка (кривая 3).

3. Мягкие механические характеристики с большим относительным падением скорости при увеличении момента и с жесткостью до α = 10. Такие характеристики имеют двигатели постоянного тока с последовательным возбуждением (кривая 4), двигатели с независимым возбуждением с большим сопротивлением в цепи якоря и асинхронные двигатели с добавочными сопротивлениями в цепи ротора.

При работе электропривода для преодоления сопротивления рабочей машины двигатель должен развивать определенный момент. Поэтому при выборе двигателя необходимо выявить прежде всего соответствие характеристик двигателя и рабочей машины.

Механические характеристики рабочих машин

Механические характеристики рабочих машин

Механической характеристикой рабочей машины называют зависимость момента статических сопротивлений машины от скорости вращения приводного вала. Эту зависимость для удобства совместного построения выражают обычно так же, как и характеристику двигателя, в виде ω = φ (Мс) или n = f (Мс).

Момент статических сопротивлений Мс , или сокращенно статический момент, представляет собой момент сопротивления, создаваемый машиной на приводном валу в статическом (установившемся) режиме, когда скорость не изменяется.

Механическую характеристику машины можно получить опытным путем или расчетом, если известно распределение статических усилий или моментов по элементам кинематической схемы. Статические моменты машин могут зависеть не только от скорости, но и от других величин, поэтому при практических расчетах электроприводов необходимо рассматривать каждый случай в отдельности.

Статические моменты различных рабочих машин по характеру зависимости их от скорости (механические характеристики) подразделяют на группы. Наиболее часто встречающиеся на практике из них следующие.

1. Статический момент мало зависит или практически не зависит от скорости (кривая 1, рис. 2, б). Такие характеристики имеют подъемные механизмы, краны, лебедки, тельферы, а также ленточные транспортеры при постоянной нагрузке.

2. Статический момент машины возрастает пропорционально квадрату скорости (кривая 2). Эту характеристику, типичную для осевых вентиляторов, называют вентиляторной характеристикой и аналитически представляют в виде формулы: Mc = Mо+kn 2 , где Мо — начальный статический момент, обусловленный чаще всего силами трения, которые обычно не зависят от скорости, k — опытный коэффициент. Кроме вентиляторов, вентиляторными характеристиками обладают центробежные и вихревые насосы, сепараторы, центрифуги, гребные винты, турбокомпрессоры и барабаны молотилок на холостом ходу.

3. Статический момент уменьшается при увеличении скорости (кривая 3). К этой группе относятся характеристики некоторых транспортерных механизмов и некоторых металлорежущих станков.

4. Статический момент изменяется от скорости неоднозначно, с резким переходом, обусловленным особенностью технологического процесса. Характеристики этой группы имеют машины, работающие с частыми большими перегрузками, которые иногда приводят к полной остановке. Например, механизм черпания одноковшового экскаватора, скребковый транспортер, работающий под завалом транспортируемой массы, дробилки и другие машины.

Кроме перечисленных, на практике встречаются и другие виды механических характеристик машин, например поршневых насосов и компрессоров, статические моменты которых зависят от пути.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Статические характеристики асинхронного двигателя

Электромеханическая характеристика асинхронного двигателя определяется как зависимость .

Из схемы замещения видно:

где — индуктивное фазное сопротивление короткого замыкания [13; 14].

В этом случае рассматривают зависимость тока ротора не от скорости, как у ДПТ, а от скольжения S; уравнения получаются более компактные и удобные.

Если возникает необходимость перейти к традиционной электромеханической характеристике как , то можно воспользоваться выражением . Отметим основные точки электромеханической характеристики, изменяя от до (рис. 5.3).

Рис. 5.3. Электромеханическая характеристика АД

1) ; ; — точка идеального холостого хода;

2) ; ; — точка короткого замыкания;

3) ; = ; — точка максимального значения тока ротора. Она располагается в области отрицательных скольжений.

4) ; ; — асимптотическое значение тока ротора.

Механическую характеристику асинхронного двигателя можно определить из уравнения потерь в цепи ротора [13; 14]:

Потери в роторе часто называют потерями скольжения.

С другой стороны, пренебрегая магнитными потерями в роторе, получаем:

Подставив в это выражение (5.6), получим уравнение механической характеристики (рис. 5.4):

Если исследовать уравнение момента на экстремум , то обнаружим наличие двух экстремальных точек. Обозначив экстремальное значение момента через , получим:

при этом соответствующее значение критического скольжения определяется как:

Знак “+” в обоих уравнениях относится к области положительных скольжений, а знак “” к области отрицательных скольжений. Экстремальное значение момента и соответствующее ему скольжение получили название критических.

Рис. 5.4. Механическая характеристика АД

Часто уравнение момента записывают в иной форме, которая может быть получена, если разделить уравнение момента на :

Характерные точки механической характеристики (рис. 5.4):

1) , , — точка идеального холостого хода;

2) , , — точка короткого замыкания;

3) , , , , , — точки максимума момента в двигательном и генераторном режимах соответственно;

4) ; ; — асимптотическое значение (асимптотой является ось скорости).

Приведенная механическая характеристика соответствует прямому порядку чередования фаз питающего напряжения. Если изменить порядок чередования фаз на обратный, то получим симметричную относительно начала координат характеристику. При этом двигательному режиму будет соответствовать третий квадрант.

Учитывая незначительную величину активного сопротивления статора R1, им часто пренебрегают. В этом случае а=0, а уравнение (5.10) механической характеристики выглядит так:

Если в уравнения моментов вместо текущих значений подставить номинальные, то есть и , а отношение выразить через , то:

Используя это выражение, по каталожным данным АД можно найти . Для АД серий 4А и АИ кратность максимального момента составляет примерно и, следовательно, критическое скольжение примерно в раза превышает номинальное (при знаке + в формуле (5.13)).

В некоторых случаях рабочий участок характеристики можно описать еще более простым выражением. Учитывая, что , можно записать:

Это выражение может использоваться только на рабочем участке характеристики.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Вопрос 43. Схема включения, статические характеристики и режимы работы асинхронного двигателя.

Схемы включение АД. С фазным и короткозамкнутым ротором.

Электромеханическая характеристика – это зависимость приведенной силы тока от скольжения.

R1 – сопротивление статора.

R2 – приведенное сопротивление ротора.

Точка идеального холостого хода: S = 0, w = w, I¢2 = 0

Точка короткого замыкания: S = 1, w = 0, I¢2 = Iк.з

Точка максимального значения тока ротора, лежащего в области отрицательных скольжений:

Механическая характеристика – это зависимость момента на валу двигателя от скольжения.

S = 0, w = w, M = 0 – точка идеального холостого хода

S = 1, w = 0, М = Мк.з – точка короткого замыкания

S = Sкд, М = Мкд, S = -Sкг, М = -Мкг – координаты точки экстремума.

Асинхронный электропривод как и электропривод постоянного тока, может работать в двигательном и трех тормозных режимах с таким же, как в электроприводе постоянного тока распределением потоков энергии.

Рекуперативное торможение (р.т.) осуществляется при вращении двигателя активным моментом со скоростью w>w0. Этот же режим будет иметь место, если при вращении ротора со скоростью w уменьшить скорость вращения поля w0. Роль активного момента здесь будет выполнять момент инерционных масс вращающегося ротора.

Для осуществления торможения противовключением (т. п-в) необходимо поменять местами две любые фазы статора. При этом меняется направление вращения поля, машина тормозится в режиме противовключения, а затем реверсируется.

Специфическим является режим динамического торможения, которое представляет собою генераторный режим отключенного от сети переменного тока асинхронного двигателя, к статору которого подведен постоянный ток Iп. Этот режим применяется в ряде случаев, когда после отключения двигателя от сети требуется его быстрая остановка без реверса. Постоянный ток, подводимый к обмотке статора, образует неподвижное в пространстве поле. При вращении ротора в его обмотке наводится переменная ЭДС, под действием которой протекает переменный ток. Этот ток создает также неподвижное поле. Складываясь, поля статора и ротора образуют результирующее поле, в результате взаимодействия с которым тока ротора возникает тормозной момент. Энергия, поступающая с вала двигателя, рассеивается при этом в сопротивлениях роторной цепи.

Вопрос 44. Регулирование скорости АД изменением числа пар полюсов.

Ступенчатое регулирование скорости можно осуществить, используя специальные многоскоростные асинхронные двигатели с короткозамкнутым ротором.

Из выражения n = 60f/р следует, что при изменении числа пар полюсов р получаются механические характеристики с разной частотой вращения n магнитного поля статора. Так как значение р определяется целыми числами, то переход от одной характеристики к другой в процессе регулирования носит ступенчатый характер.

Существует два способа изменения числа пар полюсов: с одинарной звезды на двойную и с треугольника на двойную звезду. В первом случае в пазы статора укладывают две обмотки с разным числом полюсов. При изменении скорости к сети подключается одна из обмоток. Во втором случае обмотку каждой фазы составляют из двух частей, которые соединяют параллельно или последовательно. При этом число пар полюсов изменяется в два раза. Регулирование скорости путем изменения числа пар полюсов экономично, а механические характеристики сохраняют жесткость. Недостатком этого способа является ступенчатый характер изменения частоты вращения асинхронного двигателя с короткозамкнутым ротором.

Дата добавления: 2018-02-15 ; просмотров: 614 ; Мы поможем в написании вашей работы!

Статические характеристики электрической нагрузки

Процесс потребления электрической энергии отождествляется с понятием электрической нагрузки, которая характеризуется мощностью и энергией. Нагрузкой может быть один электроприемник, группа однотипных электроприемников или совокупность различных электроприемников – смешанная нагрузка.

К основным электроприемникам в электрической системе относятся:

Существует также большое число устройств и бытовых приборов, в которых сочетаются различные по типу электроприемники.

В задачах анализа установившихся режимов электрических систем необходима величина активной и реактивной мощности нагрузки. Физическая природа потребления энергии электрической нагрузкой такова, что ее активная и реактивная мощности зависят от подведенного напряжения и частоты в электрической системе. Такие зависимости носят название статических характеристик нагрузок по частоте и по напряжению. Разные типы электрических нагрузок имеют различные статические характеристики. В совокупности различных типов электроприемников рассматриваются статические характеристики смешанной нагрузки.

Статические характеристики используются при регулировании частоты и напряжения в ЭЭС. В общем они записываются как .

Здесь мы будем рассматривать зависимости мощности нагрузки только от напряжения – статические характеристики нагрузки по напряжению . При этом будем считать частоту в ЭЭС неизменной величиной. По статическим характеристикам, построенным в относительных номинальных единицах, могут быть определены регулирующие эффекты нагрузки – как производные в какой-либо рабочей точке характеристики, например при U = Uном.

Регулирующий эффект показывает степень снижения активной и реактивной нагрузки при изменении напряжения. Чем больше регулирующий эффект, тем сильнее изменяется мощность, потребляемая нагрузкой при изменении напряжения или частоты.

Для различных электроприемников и их сочетаний статические характеристики получаются разными и зависящими от их рабочих режимов. Практически приходится пользоваться статическими характеристиками, полученными экспериментально. В некоторых случаях их удается получить расчетным путем.

Статические характеристики изображают в координатах относительных величин – активной и реактивной мощности от частоты и напряжения (рис. 2.17).

Рис. 2.17. Средние статические нагрузки
по напряжению для смешанной нагрузки

На рис. 2.17 относительная величина напряжения U* = U / Uном, а относительные мощности определяются по отношению к номинальной или какой либо выбранной величине мощности нагрузки: P* = P / Pном, Q* = Q / Qном.

Следует отметить, что в ЭЭС и конкретно у потребителей устанавливаются специальные автоматические регулирующие устройства, которые компенсируют изменение напряжения на электроприемниках, что в значительной мере снижает регулирующие эффекты нагрузки.
В простейшем случае это стабилизаторы напряжения, а в высоковольтных сетях – мощные регулируемые компенсирующие устройства реактивной мощности и регуляторы напряжения силовых трансформаторов. Рассмотрим статические характеристики отдельных видов нагрузки.

Асинхронные двигатели

Принцип действия асинхронного двигателя основан на явлении электромагнитной индукции. В неподвижную трехфазную обмотку статора асинхронного двигателя подается переменный ток, который формирует в статоре вращающееся магнитное поле. Это поле пересекает проводники замкнутой обмотки ротора и наводит в них ЭДС, под действием которых по обмотке ротора будет протекать ток. Взаимодействие этого тока с полем статора создает на проводниках обмотки ротора электромагнитные силы – вращающий момент, направление которого определяется по правилу «левой руки». Эти силы увлекают ротор в сторону вращения магнитного потока. Скорость вращения ротора всегда меньше скорости вращения магнитного поля статора. Если предположить, что в какой-то момент времени частота вращения ротора оказалась равной частоте вращения поля статора, то проводники обмотки ротора не будут пересекать магнитное поле статора и тока в роторе не будет. В этом случае вращающий момент станет равным нулю, и частота вращения ротора уменьшится по сравнению с частотой вращения поля статора, пока не возникнет вращающий момент, уравновешивающий момент нагрузки на валу двигателя и момент сил трения в подшипниках.

Асинхронные двигатели имеют различные статические характеристики. Активная мощность двигателей в значительной мере зависит от характеристик машин, приводимых во вращение двигателями. Реактивная мощность имеет разную зависимость от напряжения, обусловленную номинальной мощностью двигателя. Маломощные двигатели имеют более крутые характеристики по сравнению с мощными двигателями.

Реактивная мощность, потребляемая асинхронными двигателями, складывается из намагничивающей мощности, связанной с намагничивающим током, и мощности рассеяния, связанной с созданием полей рассеяния в статоре и роторе. При снижении напряжения реактивная мощность рассеяния растет, а намагничивающая мощность снижается. Суммарная мощность вначале снижается, а затем вновь начинает расти. При определенном напряжении, называемом критическим, дви-гатель останавливается и его дальнейшая работа становиться невозможной.

Синхронные двигатели

Вращающееся магнитное поле статора синхронной машины увлекает за собой ротор, который является электромагнитом-индуктором. Разноименные полюса магнитного поля статора и ротора притягиваются, и ротор вращается с постоянной скоростью. Для того чтобы ротор стал электромагнитом, на него подается постоянный ток – ток возбуждения. Этот ток при вращении ротора вызывает магнитное поле в статоре – реакцию якоря. В зависимости от величины тока возбуждения синхронный двигатель может работать в режиме перевозбуждения или недовозбуждения. Режим перевозбуждения – это нормальный режим работы двигателя. Мощные синхронные двигатели изготавливают с номинальным коэффициентом мощности 0,9 и 0,8 при работе с перевозбуждением.

В режиме перевозбуждения синхронный двигатель выдает реактивную мощность, т. е. имеет емкостный характер реактивной мощности по отношению к сети. При недовозбуждении синхронный двигатель имеет реактивную мощность индуктивного характера, но вследствие ограничений по устойчивости работы и перегреву лобовых частей машины максимально возможная потребляемая реактивная мощность не превышает 30 % от номинальной реактивной мощности при перевозбуждении.

Синхронные двигатели используются как источники реактивной мощности в ЭЭС и применяются для регулирования напряжения. Ток возбуждения синхронных машин изменяется в соответствии с законом регулирования напряжения в сети, поэтому статические характеристики синхронного двигателя по реактивной мощности зависят от закона регулирования напряжения в узле нагрузки, к которому он присоединен. В целом синхронные двигатели имеют положительный регулирующий эффект как по активной, так и по реактивной мощности.

Читайте также  Схема сборки двигателя скутера
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector