Сельсины. Виды и режимы работы. Принцип действия...

Сельсины. Виды и режимы работы. Принцип действия…

Оглавление

В различных отраслях промышленности, в системах автоматики и контроля часто возникает необходимость синхронного и синфазного вращения или поворота двух и более осей, механически не связанных друг с другом. Такие задачи решаются с помощью систем синхронной связи.( https://ru.wikipedia.org)

Простейший сельсин состоит из статора с трёхфазной обмоткой (схема включения — треугольник или звезда) и ротора с однофазной обмоткой. Два таких устройства электрически соединяются друг с другом одноимёнными выводами — статор со статором и ротор с ротором. На роторы подаётся одинаковое переменное напряжение. При таких условиях вращение ротора одного сельсина вызывает поворот ротора другого сельсина. При повороте одного из сельсинов (сельсин-датчика) на определённый угол в нём наводится ЭДС, отличная от первоначальной. Поскольку сельсины (их роторы) соединены, то эта же ЭДС будет возникать и во втором сельсине (сельсин-приёмнике) и по правилу левой руки он отклонится от первоначального положения на тот же угол.

Общие положения

Различают два вида систем синхронной связи: синхронного вращения («электрический вал»); и синхронного поворота («передача угла»).

В простейшем случае «электрический вал» может быть реализован на двух одинаковых асинхронных двигателях с фазным ротором, обмотки статора которых питаются от одной и той же сети трехфазного тока, а обмотки ротора соединены друг с другом (рис.5.1).

Рис. 5.1. Схема «электрического вала»

Системы передачи угла осуществляются с помощью специальных индукционных микромашин — сельсинов. С е л ь с и н а м и (от английского слова «selfsinchroniring») называются электрические микромашины переменного тока, обладающие свойством самосинхронизации.

Сельсины бывают трехфазные и однофазные. Т р е х ф а з н ы е сельсины конструктивно ничем не отличаются от асинхронных двигателей с фазным ротором. Однако они не получили большого распространения главным образом из-за неравенства синхронизирующих моментов при повороте ротора по полю и против поля.

О д н о ф а з н ы е сельсины конструктивно похожи на синхронные машины малой мощности, обмотка возбуждения которых питаются переменным током.

В системах автоматики «передача угла» осуществляется по двум, принципиально разным схемам: индикаторной и трансформаторной.

И н д и к а т о р н а я схема используется там, где на приемной оси небольшой момент статического сопротивления (стрелка, шкала прибора и т.п.). В этих схемах сельсин-приемник самостоятельно отрабатывает угол, заданный датчиком.

Т р а н с ф о р м а т о р н а я схема применяется в тех случаях, когда на приемной оси имеется значительный момент сопротивления. В таких схемах сельсин-приемник лишь управляет мощным силовым двигателем, осуществляющим поворот какого-то механизма.( http://dic.academic.ru)

Строго говоря, в каждой схеме должны использоваться свои сельсины: индикаторные или трансформаторные, хотя один и тот же сельсин может работать в любой из них.

Устройство сельсинов

Сельсины состоят из статора и ротора. Они имеют одну обмотку возбуждения и три, сдвинутых в пространстве на 120 0 и соединенных в звезду, обмотки синхронизации. Сельсины бывают контактные и бесконтактные.

Рис.5.2. Конструктивные схемы контактных сельсинов

Магнитная система к о н т а к т н ы х сельсинов может быть неявнополюсной (рис.5.2, а,) или явнополюсной (рис.5.2, б, в). Обмотка возбуждения может располагаться как на роторе, так и на статоре. Первая конструкция более предпочтительна, т.к. имеет только два кольца вместо трех.

Большим недостатком контактных сельсинов является наличие скользящего контакта, переходное сопротивление которого может изменяться в довольно широких пределах. Это снижает точность передачи угла и уменьшает надежность работы систем синхронной связи.

Широкое распространение получили бесконтактные сельсины, не имеющие указанного недостатка.

Рис. 5.3. Конструктивная схема и магнитная цепь бесконтактного сельсина

Ротор-Р бесконтактного сельсина (рис.5.3) имеет два стальных пакета, разделенных немагнитным материалом — НМ (обычно сплавом алюминия). Пакеты ротора шихтованы в продольном направлении. Статор состоит из сердечника — С и двух колец — К. В пазах статора уложена обмотка синхронизации — ОС, выполненная по типу трехфазной. К кольцам примыкают пакеты внешнего магнитопровода — ВМ, то же шихтованных в продольном направлении. Обмотка возбуждения — ОВ выполнена в виде двух кольцевых катушек.

Магнитный поток, созданный обмоткой возбуждения, замыкается по пути, показанному на рис.5.3. Из одного пакета ротора он проходит через небольшой воздушный зазор в статор — С. Затем по его спинке проходит половину окружности и выходит в другой пакет ротора. Отражаясь от косого зазора, он по кольцу — К и внешнему магнитопроводу — ВМ снова попадает в первый пакет ротора. При повороте ротора изменяется положение потока возбуждения относительно обмоток синхронизации, поэтому ЭДС, индуцируемые в них, будут зависеть от угла поворота ротора так же, как и в контактном сельсине.

Принцип работы сельсинов (трансформаторный режим).

Сельсины, работающие в трансформаторном режиме, конструктивно не отличаются от сельсинов, работающих в индикаторном режиме, и применяются в следящих системах. На рисунке показана схема включения сельсинов, работающих в трансформаторном режиме. Отличие этой схемы от схемы включения сельсинов в индикаторном режиме, состоит в том, что однофазная обмотка ВП сельсина-приемника С-П не включается в сеть переменного тока, а подключается к управляющему блоку усилителя У. При подаче питания в обмотку возбуждения ВД сельсина-датчика С-Д в обмотках синхронизации потечет ток, который в сельсине-приемнике создаст пульсирующий магнитный поток.

«Схема включения сельсинов в трансформаторном режиме»

В исходном положении ротор этого сельсина должен быть расположен так, чтобы его ось была ориентирована перпендикулярно оси пульсирующего магнитного потока, созданного обмотками синхронизации. В этом случае оси обмоток ВД и ВП будут сдвинуты в пространстве на 90° и напряжение на выводах обмотки ВП равно нулю. На усилитель СУ не будет подаваться сигнал, и он не будет давать питание на исполнительный двигатель ИД. Система будет неподвижна. (http://www.mtomd.info/archives/2675)

Если теперь повернуть ротор сельсина-датчика С-Д на какой-либо угол α, то токи в обмотках синхронизации изменятся, и ось магнитного потока в сельсине-приемнике С-П повернется на тот же угол. При этом появится напряжение на обмотке ВП, пропорциональное sin α. На вход усилителя У поступит сигнал. Усиленный сигнал от усилителя У поступает на двигатель ИД, который приводит в действие исполнительный механизм ИМ и одновременно поворачивает ротор сельсина-приемника в такое положение, когда его обмотка ВП снова будет сдвинута на 90° относительно оси обмотки ВД. В этом положении подача сигнала на усилитель прекращается и привод останавливается. Таким образом, исполнительный механизм будет повторять повороты или вращение ротора сельсина-датчика (будет «следить» за поворотами ротора сельсина-датчика).

В современных устройствах сельсины всё чаще заменяются энкодерами. И только там, где простота, надёжность и ремонтопригодность важнее точности (например, в авиации), сельсины всё ещё остаются незаменимыми.

Недостатком бесконтактных сельсинов является худшее использование активных материалов. Их масса примерно в 1, 5 раза больше, чем контактных. Объясняется это большими воздушными зазорами, вследствие чего сельсины имеют значительные потоки рассеяния и большие намагничивающие токи.

Источники информации

Арменский Е. В., Фалк Г. Б. Электрические микромашины: Учебн. пособие для студентов электротехнических специальностей вузов. — 3-е

Сельсины: назначение, устройство, принцип действия

Сельсины: назначение, устройство, принцип действияСельсины представляют собой особый вид электрических машин переменного тока мощностью от нескольких ватт до нескольких сот ватт (менее киловатта). Служит сельсин для дистанционной передачи механического угла поворота электрическим путем между устройствами, не имеющими между собой механической связи.

Всякий сельсин имеет статор и ротор, на которых расположены обмотки переменного тока. Существуют сельсины с однокатушечной обмоткой на статоре и трехкатушечной на роторе, и, наоборот, с трехкатушечной обмоткой на статоре и однокатушечной на роторе, и, наконец, с трехкатушечной обмоткой на статоре и с такой же обмоткой на роторе.

По своему назначению в схемах авторегулирования сельсины делятся на:

  • сельсин-датчики,
  • сельсин-приемники
  • дифференциальные.

Для уяснения работы сельсина рассмотрим рис. 1, а.

Схемы включения сельсинов

Рис. 1. Схемы включения сельсинов: а — по системе датчик — приемник; б — сельсин-приемник в трансформаторном режиме; в — дифференциального

Сельсин-датчик и сельсин-приемник своими однокатушечными обмотками статора подключены к одной и той же сети переменного тока, а трехкатушечные обмотки ротора соединены между собой. Если теперь повернуть ротор датчика на произвольный угол, то на такой же угол повернется ротор приемника. Если ротор датчика вращать непрерывно с произвольной скоростью, то с такой же скоростью будет вращаться и ротор приемника.

Действие сельсинной связи основано на принципе электромагнитной индукции, заключающейся в следующем. Переменный ток однокатушечной обмотки статора индуктирует в трехкатушечной обмотке ротора токи, величины которых зависят от относительного расположения обмоток ротора и статора.

Если роторы обоих сельсинов расположены одинаково по отношению к своим статорам, то токи в соединительных проводах роторов равны и противоположны между собой, и поэтому ток в каждой катушке равен нулю. Как следствие, равен нулю вращающий момент на валу одного и другого сельсинов.

Если теперь вручную или иным способом повернуть ротор сельсин-датчика на определенный угол, то нарушится равновесие токов между роторами, и на валу сельсин-приемника возникнет вращающийся момент, благодаря чему его ротор будет поворачиваться до тех пор, пока не исчезнет неравновесие, токов, т. е. пока этот ротор не примет то же положение, что и сельсин-датчик.

сельсины

В системах авторегулирования нередко сельсин-приемник работает в трансформаторном режиме (рис. 1, б). В этом случае ротор приемника закрепляется неподвижно, а обмотка его статора отключается от сети. В этой обмотке индуктируется э. д. с. со стороны ротора, по обмоткам которого протекают токи, обусловливаемые положением ротора сельсин-датчика. Это означает, что величина э. д. с. на зажимах ротор приемника пропорциональна углу поворота датчика.

В исходном положении роторы смещены на 90° относительно друг друга и в этом случае индуктируемая на роторе датчика э. д. с. равна нулю. Теперь при повороте ротора-датчика на роторе приемника будет индуктироваться э. д. с. Епр, пропорциональная углу рассогласования роторов

Епр = Емакс х sin θ

Дифференциальный сельсин применяется в тех случаях, когда нужно контролировать разность углов поворота двух осей, т. е. их рассогласование. В этом случае два сельсин-датчика находятся на двух валах, скорости которых сравниваются между собой. Трехкатушечными обмотками роторы этих сельсинов соединены с трехкатушечными обмотками статора и ротора третьего сельсина, являющегося дифференциальным (рис. 1, в). Угол поворота ротора дифференциального сельсина равен разности углов поворота сельсин-датчиков.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Сельсины. Виды и режимы работы. Принцип действия и особенности

Во многих технологических процессах в промышленности, а также в системах автоматизации требуется синфазное и синхронное вращение осей, которые не связаны между собой механическим путем. Подобные задачи способны решить системы синхронной связи, которые называются сельсины.

Они обладают способностью самостоятельной синхронизации, и используются в синхронных системах передачи угла вращения на расстоянии в качестве приемников и передатчиков.

Виды синхронной связи

Системы синхронной связи делятся на два вида.

Система синхронного вращения

Эта система выполнена на двух равных асинхронных электродвигателях с фазным ротором. Обмотки роторов между собой соединены, а обмотки статора подключены к одной сети переменного трехфазного тока.

Selsiny sinkhronnogo vrashcheniia

Система синхронного поворота

Работа системы основана на специальных микромашинах индукционного вида (сельсинах), которые обладают свойством самосинхронизации.

Сельсины делятся по количеству фаз на два вида:
  • Трехфазные сельсины по своей конструкции не имеют отличия от асинхронных электродвигателей. Такие модели не нашли широкого применения в основном из-за разности моментов синхронизации во время поворота ротора.
  • Однофазные сельсины имеют устройство, аналогичное конструкции маломощных синхронных машин. Их обмотка возбуждения работает от переменного тока.
Режимы работы

В автоматических системах синхронный поворот производится в двух различных режимах.

Cinkhronnyi povorot v dvukh rezhimakh
Индикаторный режим

На рисунке «а» показана схема индикаторного режима. Ведомая ось О2 соединена с ротором сельсина-приемника «П». Такую схему используют при малой величине момента торможения на ведомой оси, чаще всего, когда на оси закреплена индикаторная стрелка.

Обмотки возбуждения подключены в общей цепи, а обмотки синхронизации объединены линией связи. Магнитные потоки, образованные обмотками приемника и датчика, создают в 3-х фазах обмоток электродвижущую силу.

При наличии между роторами угла рассогласования в обмотках возникает ток, который создаст в приемнике и датчике с помощью потока возбуждения моменты разного направления, сводящие к нулю угол рассогласования.

Чаще всего ротор датчика заторможен. Вследствие этого его момент синхронизации действует на механизм поворота ведущей оси. Момент приемника воздействует на ротор и поворачивает его синхронно с ротором датчика на такой же угол.

Трансформаторный режим

Электрический сигнал о рассогласовании роторов поступает на усилитель, а затем на исполнительный мотор, поворачивающий ротор приемника и ведомую ось для устранения рассогласования.

Режим трансформатора используют в таких ситуациях, когда на ведомую ось приложен большой момент торможения, другими словами, для поворота некоторого механизма. В этом режиме обмотка датчика, связанного механическим путем с ведущей осью, подключается к сети питания однофазного тока, а обмотка приемника к усилителю, который подает напряжение на управляющую обмотку исполнительного электрического двигателя. Обмотки синхронизации 2-х сельсинов объединены линией связи.

Переменный ток образует в обмотке возбуждения датчика импульсы магнитного потока, который создает электродвижущую силу в синхронизирующей обмотке. Обмотки приемника и датчика соединены, поэтому по ним будет проходить ток и в приемнике образуются импульсы магнитного потока.

При наличии рассогласования роторов этот поток создает в возбуждающей обмотке электродвижущую силу, образует на выходе напряжение, которое подается на усилитель, а затем на обмотку статора исполнительного мотора. Вследствие этого ведомая ось поворачивается вместе с ротором приемника. После устранения рассогласования напряжение на выходе обнуляется, и ведомая ось прекращает свое вращение.

В трансформаторном режиме погрешность работы сельсина определяется технологическими и конструктивными особенностями: разбросом параметров приемника и датчика, неравномерностью магнитной проводимости, несимметричностью изготовления обмоток.

Передача угла в этом режиме имеет эксплуатационные погрешности, которые образуются вследствие влияния условий работы на сельсин-приемник. Если изменить сопротивление нагрузки в управляющей цепи обмотки сельсина-приемника, то это отразится на его работе.

Схемы, возможные для работы обоих режимов, делятся на три группы:
  1. Датчик и один приемник.
  2. Датчик с многими приемниками.
  3. Один приемник и два датчика.
Конструктивные особенности
Моторы по устройству можно разделить на два вида:
  • Контактные с обмоткой ротора, соединенной с внешней цепью с помощью контактных колец и щеток.
  • Бесконтактные , не имеющие контактных элементов.
Контактные

Kontaktnye selsiny

Их устройство аналогично конструкции асинхронных маломощных электродвигателей с фазным ротором. Статор (1) и ротор (2) являются неявнополюсными, вследствие чего обе обмотки (3, 4) являются распределенными. Возбуждающая обмотка находится на роторе. Питание к этой обмотке подходит по двум кольцам (5).

Некоторые модели сельсинов выполнены с ротором и статором, имеющим явно выраженные полюсы. Это дает возможность увеличить момент синхронизации. В качестве недостатка контактных видов сельсинов следует назвать наличие контактных элементов (колец).

Бесконтактные сельсины

Beskontaktnye selsiny

В сельсинах, не имеющих контактных компонентов, обе обмотки находятся на статоре. Ротор выполнен в виде цилиндра (6) из материала с ферромагнитными свойствами. Ротор разделен на два изолированных полюса с помощью алюминиевой прослойкой (7).

С торцов сельсина находятся сердечники в виде тора (1), изготовленные из электротехнической листовой стали. Внутренняя часть поверхности сердечников находится над ротором. К наружной поверхности подходят стержни внешнего магнитопровода (4). 1-фазную обмотку возбуждения изготавливают в виде 2-х дисковых катушек (2), находящихся по разным сторонам статора между сердечниками и обмоткой синхронизации.

В процессе функционирования сельсина импульсный магнитный поток замыкается в магнитной системе. При этом он соединяется с 3-фазной синхронизирующей обмоткой на статоре. Штриховой линией на рисунке показан путь замыкания магнитного потока.

Во время поворота ротора меняется позиция оси магнитного потока относительно синхронизирующих обмоток. Вследствие этого электродвижущая сила, возникающая в фазах синхронизирующей обмотки, будет напрямую зависеть от поворота ротора, по аналогии с работой контактных сельсинов.

Сельсины. Виды и режимы работы. Принцип действия и особенности

На предложенных схемах изображены различные варианты включения (как датчика, как приемника и в качестве дифференциального устройства).

После их анализа можно сделать следующие выводы:

  • Как датчики, так и приемники своими статорными обмотками напрямую подсоединяются к питающей сети.
  • Их 3-х катушечные роторные обмотки объединены линейными электрическими связями.
  • За счет такого включения при повороте первичного ротора на заданный угол аналогичный узел приемника повернется на тот же градус.
  • Если вращать подвижную часть датчика с фиксированной скоростью – с той же частотой будет крутиться соответствующий узел приемника.

В основу данного эффекта заложен принцип э/м индук

В основу данного эффекта заложен принцип э/м индукции, суть которого состоит в способности обмотки с переменным током наводить поле в близко расположенной катушке (на схеме – вариант «а»).

Важно! Индуцировать стороннее поле способен только меняющийся по величине или фазе (то есть переменный) ток.

Величина наводимого в катушке статора ЭДС зависят от ее удаления от роторных обмоток. В случае, когда вращающиеся части двух приборов (приемного и передающего) разнесены от своих статоров на равное расстояние – наблюдается интересный эффект. Он состоит в том, что в этой ситуации токи в роторных контурах равны и противоположны по направлению, что приводит к обнулению их результирующей. Следствием этого является пропадание вращающего момента на валах обоих сельсинов (они неподвижны)!

Видео

Видео

Для чего служит сельсин датчик и что это такое

Всем кто хотел бы выяснить, что это такое сельсин датчик, необходимо подробно ознакомиться с его устройством и принципом действия. Для этого, прежде всего, следует понять, что он представляет собой разновидность электрических устройств, работающих только на переменном токе.

Дополнительная информация: Мощность этих приборов варьируется от нескольких единиц до сотен ватт (но не более киловатта).

Лучший способ понять, что такое сельсин датчик – это разобраться с его назначением. После ознакомления с этим вопросом выясняется, что он позволяет отслеживать поведение подвижных частей двух устройств, удаленных на определенное расстояние. Такая возможность позволяет согласовывать их вращение в отсутствие механической связи (электрическим путем – по проводам). Другими словами, сельсиновые датчики это электрически синхронизированные передающие и приемные устройства.

Общие сведения, классификация

Машины синхронной связи предназначены для осуществления синхронного или синфазного поворотов двух осей, механически между собой не связанных, или для их вращения. Индукционные системы синхронной связи делятся на трехфазные и однофазные. Трехфазные системы применяются для синхронизации двух валов приводных двигателей, не связанных механически. Обычно это силовые системы относительно большой мощности, носящие название систем электрического вала. Их используют, например, в механизмах разводки мостов, ворот шлюзов, в установках бумажной промышленности и т. д. Однофазные системы применяются в маломощных установках и широко используются в схемах автоматических устройств. Микромашины, применяемые в индукционных системах синхронной связи в качестве датчиков и приемников, получили название сельсинов, подчеркивающее их способность к самосинхронизации (self synchron означает самосинхронизирующийся). В теории синхронной связи автоматических устройств различают два понятия: синхронную индикаторную передачу — индикаторный режим сельсинов и следящий привод — трансформаторный режим сельсинов. В первом случае требуется передать лишь незначительный момент, необходимый, например, для поворота стрелки прибора (индикатора) для указания на расстоянии положения какого-либо регулирующего органа — клапана, задвижки, заслонки, вентиля и т. д. Передача показаний на пульт управления особенно важна в случаях, когда по каким- либо причинам человек не может подойти к регулируемому органу. Схема синхронной индикаторной передачи дана на рисунке 347. Здесь сельсин-датчик Д (заводящее устройство) и сельсин-приемник П (отрабатывающее устройство) при угле заводки а отрабатывают пропорциональный угол са непосредственно, то есть стрелка индикатора находится на оси приемника П. При необходимости передать угол поворота механизму, к валу которого приложен более или менее значительный момент сопротивления, использовать индикаторную схему можно лишь при мощных силовых сельсинах. Мощной должна быть и линия связи. Рациональнее и проще поступить иначе: от датчика к приемнику передать слабый по мощности сигнал, который затем, будучи усилен, воздействует на исполнительный двигатель, связанный с приводным механизмом. В такой системе следящего привода схема связи построена так, чтобы напряжение приемника П (сигнал) было функцией угла поворота ротора датчика Д. Кроме того, между приемником и исполнительным двигателем должна быть обратная связь, приводящая роторы датчика и приемника в согласованное положение (положение нулевого сигнала) по окончании отработки. Схема следящего привода дана на рисунке 348. На заводящем устройстве Д, возбуждаемом напряжением сети, осуществляется механический поворот на угол а (угол заводки). Сигнал, выработанный в отрабатывающем устройстве Я, после предварительного усиления в усилительном устройстве УУ в виде напряжения управления подается на исполнительный двигатель ИД, возбуждаемый напряжением сети. Исполнительный двигатель, будучи соединен механически с валом нагрузки, приводит его во вращение.  Рис. 347. Схема синхронной индикаторной передачи. Рис. 348. Схема следящего привода.

Читайте также  Стук компенсаторов двигателя опель

Благодаря механической обратной связи исполнительного двигателя с отрабатывающим устройством П будет постепенно уменьшаться напряжение управления, и, когда отрабатывающее устройство П повернется на угол заводки a, Uy станет равным нулю и исполнительный двигатель остановится. В результате произойдет поворот вала нагрузки на угол а или пропорциональный ему са. Индукционным системам синхронной связи присущ ряд положительных свойств: отсутствие искровой коммутации, то есть разрывов цепи питания датчиков при работе системы; высокая точность, обеспечивающая малые углы ошибки между положениями роторов датчика и приемника в согласованном режиме (не выше 2,5° для машин низшего класса); плавность отработки приемником поворота датчика; возможность иметь датчик и приемник бесконтактными; однотипность датчика и приемника.

Общее устройство сельсина

Данные системы способны синхронно и плавно передавать на расстояние необходимые угловые величины. Механическая связь между ними отсутствует, а все передачи выполняются за счет электрических соединений, выступающих в качестве линий связи. Мощность таких приборов находится в пределах от нескольких ватт до 1 кВт, поэтому они могут использоваться для решения многих технических задач.  В конструкцию каждого сельсина входит статор и ротор с обмотками переменного тока. В соответствии со своими особенностями, эти устройства конструктивно могут состоять из следующих элементов:

  • Обмотка с одной катушкой на статоре и с тремя – на роторе.
  • Обмотка с тремя катушками на статоре и с одной – на роторе.
  • Обмотка с тремя катушками на статоре и с тремя – на роторе.

Как видно из представленной схемы, сельсины, задействованные в схемах автоматических регулировок, разделяются на следующие категории:

  • Сельсин-датчики.
  • Сельсин-приемники.
  • Дифференциальные сельсины.

Основной функцией этих устройств является синхронный поворот или вращение двух или нескольких осей, не имеющих между собой механической связи. Аппарат, механически связанный с ведущей осью, считается датчиком, а другой такой же прибор, соединенный с ведомой осью называется приемником. Когда ротор датчика поворачивается на какой-то угол, то ротор приемника синхронно выполняет поворот на такой же угол.

Каждый сельсин имеет обмотки, разделяющиеся на первичную – обмотку возбуждения и вторичную – обмотку синхронизации. В зависимости от количества фаз первичной обмотки, устройства могут быть одно- или трехфазными. Вторичная обмотка практически всегда выполняется в трехфазном варианте.

Расположение первичной и вторичной обмотки не влияет на принцип работы сельсин-устройств. Тем не менее, обмотку синхронизации принято устанавливать на статоре, а обмотку возбуждения на роторе. Такое размещение позволяет снизить количество контактных колец и повысить общую надежность устройства.

Бесконтактные сельсины. Принцип действия бесконтактного сельсина

В настоящее время широкое применение находят бесконтактные сельсины. У них отсутствуют скользящие контакты, что повышает надежность и точность их работы. В таких сельсинах (рисунок, позиция а) обмотки синхронизации и возбуждения размещают на статоре, а ротор не имеет обмоток. Ротор состоит из двух пакетов 1 и 2, набранных из листовой стали, между которыми имеется косой промежуток 3, заполненный немагнитным материалом, вследствие этого полюсы ротора в магнитном отношении разделены. Листы пакетов ротора располагаются параллельно оси вала, как показано на рисунке, позиции б. Основной пакет статора 4 имеет обычную конструкцию и в его пазах 5 размещается обмотка синхронизации 6. Обмотка возбуждения 7 состоит из двух кольцевых катушек, оси которых совпадают с осью ротора.

Бесконтактный сельсин схема

Магнитный поток, созданный обмоткой возбуждения 7, из полюса П1 в полюс П2 замыкается через боковые кольца 8 и пакет внешнего магнитопровода 9, набранного из полос электротехнической стали, а затем через зубцы и ярмо пакета статора.

В зубцовом слое статора магнитный поток, созданный обмоткой возбуждения, как и в контактном сельсине, будет сцепляться с обмоткой синхронизации. В зависимости от назначения и режимов работы различают: сельсины, работающие в индикаторном режиме; сельсины, работающие в трансформаторном режиме, и дифференциальные сельсины.

Конструкция

Исполнение сельсинов диктует их принцип действия. Принято выделять:

  • контактные, у которых для соединения обмотки ротора и внешней цепи используются щетки и контактные кольца;
  • бесконтактные, в составе которых нет контактных элементов.

Каждая разновидность имеет свои отличительные особенности, с которым стоит обязательно ознакомиться, чтобы понять принцип работы.

Контактные

Контактные по своему исполнению аналогичны асинхронным электродвигателям с фазным ротором и малой мощностью. В их состав входят неявнополюсные ротор и статор. Благодаря этому обе обмотки – распределенные. У ротора предусмотрена обмотка возбуждения. Для подвода электротока используются два кольца.

У отдельных моделей уже имеется статор и ротор. Эт

У отдельных моделей уже имеется статор и ротор. Это их явное преимущество. В результате величина момента синхронизации возрастает. Однако контактные элементы в этом случае — явный недостаток.

Бесконтактные

Для их включения не нужны никакие контактные элементы. Обе обмотки изначально устанавливаются на статоре. Ротор имеет характерную цилиндрическую форму. Для его изготовления используется материал, имеющие ферримагнитные свойства. Алюминиевая прослойка делит роток на два полюса.

Торообразные сердечники располагаются на торцах сельсинов. Их внутренняя часть располагается над ротором. Наружная соединяется со стержнями внешнего магнитопровода. Для изготовления сердечников используется электротехническая листовая стали. Однофазная обмотка устройства состоит из двух дисковых катушек, располагающихся по обеим сторона статора между сердечниками и обмоткой синхронизации.

В процессе работы устройства происходит замыкание

В процессе работы устройства происходит замыкание магнитного потока импульсного типа. Трехфазная синхронизирующая обмотка соединяется на статоре. Положение оси потока магнитной индукции по мере изменения пространственного положения ротора изменяется. Он занимает иное положение относительно синхронизирующих обмоток. Величина возникающей ЭДС напрямую зависит от величины угла, на который смог повернуться ротор.

К недостаткам подобных устройств является не такое эффективное использование активных материалов. Кроме того, они в среднем на 50% тяжелее контактных аналогов, что обусловлено большими воздушными зазорами. Благодаря последним, величина токов намагничивания возрастает.

§85. Сельсины

Принцип действия. Сельсины служат для синхронного поворота или вращения двух или нескольких осей, механически не связанных друг с другом. Одну из этих машин, механически соединенную с ведущей осью, называют датчиком, а другую, соединенную с ведомой осью (непосредственно или с помощью промежуточного двигателя),— приемником. При повороте ротора сельсина-датчика на какой-либо угол ?Д ротор сельсина-приемника поворачивается на такой же точно угол ?П. Следовательно, система из двух сельсинов стремится ликвидировать рассогласование между положениями роторов датчика и приемника и в идеальном случае свести его к нулю.

Сельсины имеют две обмотки: первичную, или обмотку возбуждения, и вторичную, или обмотку синхронизации. В зависимости от числа фаз обмотки возбуждения различают одно- и трехфазные сельсины. Обмотку синхронизации сельсинов обычно выполняют по типу трехфазной.

Принцип действия сельсина не зависит от места расположе,-ния каждой из обмоток. Однако чаще всего в сельсинах обмотку синхронизации размещают на статоре, а обмотку возбуждения — на роторе (для уменьшения числа контактных колец и повышения надежности работы).

Режимы работы. Различают два основных режима работы сельсинов — индикаторный и трансформаторный.

При индикаторном режиме (рис. 280, а) ротор сельсина-приемника П соединяют непосредственно с ведомой осью O2. Этот режим применяют при малом значении тормозного момента на ведомой оси, обычно в тех случаях, когда на оси укреплена хорошо уравновешенная стрелка индикатора (отсюда название — индикаторный). Обмотки возбуждения В датчика Д и приемника П включены в общую сеть переменного тока, а обмотки синхронизации соединены линией связи ЛС. Пульсирующие магнитные потоки, создаваемые обмотками возбуждения датчика и приемника, индуцируют в трех фазах обмоток синхронизации э. д. с. Если между роторами датчика и приемника имеется некоторый угол ? = ?д — ?п рассогласования, то по обмоткам синхронизации будут протекать токи, которые, взаимодействуя с потоком возбуждения, создают в датчике и приемнике синхронизирующие моменты. Эти моменты имеют противоположные направления и стремятся свести угол рассогласования к нулю. Обычно ротор датчика заторможен, поэтому его синхронизирующий момент воспринимается механизмом, поворачивающим ведущую ось О1; синхронизирующий же момент приемника поворачивает его ротор в ту же сторону, что и ротор датчика, и на тот же угол.

При трансформаторном режиме сигнал о наличии рассогласования между положениями роторов датчика и приемника подается через усилитель на исполнительный двигатель, который поворачивает ведомую ось и ротор сельсина-приемника, ликвидируя рассогласование.

Трансформаторный режим применяют в тех случаях, когда к ведомой оси приложен значительный тормозной момент, т. е. когда приходится поворачивать какой-либо механизм. При работе сельсинов в трансформаторном режиме (рис. 280, б) обмотка возбужде-

alt=»Рис. 280. Схемы включения сельсинов при работе их в индикаторном (а) и трансформаторном (б) режимах» width=»300″ height=»93″ />Рис. 280. Схемы включения сельсинов при работе их в индикаторном (а) и трансформаторном (б) режимах

ния В датчика Д, механически связанного с ведущей осью 01, подключается к сети однофазного тока, а обмотка возбуждения В приемника П — к усилителю У, подающему питание на обмотку управления двухфазного исполнительного двигателя ИД. Обмотки синхронизации обоих сельсинов соединены линией связи ЛС.

Переменный ток, проходящий по обмотке возбуждения датчика, создает в нем пульсирующий магнитный поток, который индуцирует э. д. с. в трех фазах обмотки синхронизации.

Так как обмотки синхронизации датчика и приемника соединены линией связи, по ним будет протекать ток, вследствие чего в приемнике создается свой пульсирующий магнитный поток. Если имеет место рассогласование положений роторов датчика и приемника, то этот поток индуцирует в обмотке возбуждения некоторую э. д. с, и на зажимах ее появляется выходное напряжение Uвых. Это напряжение через усилитель У подается на одну из обмоток статора исполнительного двигателя ИД, который поворачивает ведомую ось O2 совместно с ротором приемника. Когда рассогласование ликвидируется, выходное напряжение станет равным нулю и вращение ведомой оси прекратится.

Устройство. По конструкции сельсины разделяют на контактные, у которых обмотка ротора соединена с внешней цепью через контактные. кольца и щетки, и бесконтактные. Контактные сельсины (рис. 281) устроены так же, как асинхронные двигатели с фазным ротором малой мощности. Статор 1 и ротор 2 такого сельсина неявнополюсные, поэтому обе обмотки 3 и 4 — распределенные. Обмотка возбуждения расположена на роторе; ток к ней подводится через два контактных кольца 5. В некоторых конструкциях статор и ротор имеют явновыраженные полюсы, что обеспечивает повышение синхронизирующего момента. Основной недостаток контактных сельсинов — наличие контактных колец.

В бесконтактных сельсинах (рис. 282) обе обмотки расположены на статоре. Ротор бесконтактного сельсина представляет собой цилиндр 6 из ферромагнитного материала, разделенный немагнитной алюминиевой прослойкой 7 на две магнитно изолированные части — полюсы.

Рис. 281. Устройство контактного сельсина

Рис. 281. Устройство контактного сельсина

Рис. 282. Устройство бесконтактного сельсина

Рис. 282. Устройство бесконтактного сельсина

С торцовых сторон сельсина расположены тороидальные сердечники 1, выполненные из листовой электротехнической стали. Внутренняя поверхность этих сердечников расположена над ротором, а к их внешней поверхности примыкают стержни внешнего магнитопровода 4. Однофазную обмотку возбуждения сельсина выполняют в виде двух дисковых катушек 2, расположенных с противоположных сторон статора 3
по оси сельсина между обмоткой синхронизации 5 и тороидальными сердечниками. В процессе работы сельсина пульсирующий магнитный поток возбуждения замыкается в его магнитной системе, сцепляясь с трехфазной обмоткой синхронизации на статоре. Путь, по которому происходит замыкание потока, показан на рис. 282 штриховой линией.

При повороте ротора изменяется положение оси потока относительно обмоток синхронизации, поэтому э. д. с, индуцируемая в фазах обмотки синхронизации, будет зависеть от угла поворота ротора так же, как и в контактных сельсинах.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector