Регулятор оборотов двигателя для сварочного полуавтомата

Регулятор оборотов двигателя для сварочного полуавтомата

Регулировка подачи проволоки на сварочном полуавтомате

Информация Неисправность Прошивки Схемы Справочники Маркировка Корпуса Сокращения и аббревиатуры Частые вопросы Полезные ссылки

Справочная информация

Этот блок для тех, кто впервые попал на страницы нашего сайта. В форуме рассмотрены различные вопросы возникающие при ремонте бытовой и промышленной аппаратуры. Всю предоставленную информацию можно разбить на несколько пунктов:

  • Диагностика
  • Определение неисправности
  • Выбор метода ремонта
  • Поиск запчастей
  • Устранение дефекта
  • Настройка

Неисправности

Все неисправности по их проявлению можно разделить на два вида — стабильные и периодические. Наиболее часто рассматриваются следующие:

  • не включается
  • не корректно работает какой-то узел (блок)
  • периодически (иногда) что-то происходит

О прошивках

Большинство современной аппаратуры представляет из себя подобие программно-аппаратного комплекса. То есть, основной процессор управляет другими устройствами по программе, которая может находиться как в самом чипе процессора, так и в отдельных микросхемах памяти.

На сайте существуют разделы с прошивками (дампами памяти) для микросхем, либо для обновления ПО через интерфейсы типа USB.

Схемы аппаратуры

Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. Это могут быть как отдельные платы (блоки питания, основные платы, панели), так и полные Service Manual-ы. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

    (запросы) (хранилище) (запросы) (запросы)

Справочники

На сайте Вы можете скачать справочную литературу по электронным компонентам (справочники, таблицу аналогов, SMD-кодировку элементов, и тд.).

Marking (маркировка) — обозначение на электронных компонентах

Современная элементная база стремится к миниатюрным размерам. Места на корпусе для нанесения маркировки не хватает. Поэтому, производители их маркируют СМД-кодами.

Package (корпус) — вид корпуса электронного компонента

При создании запросов в определении точного названия (партномера) компонента, необходимо указывать не только его маркировку, но и тип корпуса. Наиболее распостранены:

  • DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
  • SOT-89 — пластковый корпус для поверхностного монтажа
  • SOT-23 — миниатюрный пластиковый корпус для поверхностного монтажа
  • TO-220 — тип корпуса для монтажа (пайки) в отверстия
  • SOP (SOIC, SO) — миниатюрные корпуса для поверхностного монтажа (SMD)
  • TSOP (Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
  • BGA (Ball Grid Array) — корпус для монтажа выводов на шарики из припоя

Краткие сокращения

При подаче информации, на форуме принято использование сокращений и аббревиатур, например:

СокращениеКраткое описание
LEDLight Emitting Diode — Светодиод (Светоизлучающий диод)
MOSFETMetal Oxide Semiconductor Field Effect Transistor — Полевой транзистор с МОП структурой затвора
EEPROMElectrically Erasable Programmable Read-Only Memory — Электрически стираемая память
eMMCembedded Multimedia Memory Card — Встроенная мультимедийная карта памяти
LCDLiquid Crystal Display — Жидкокристаллический дисплей (экран)
SCLSerial Clock — Шина интерфейса I2C для передачи тактового сигнала
SDASerial Data — Шина интерфейса I2C для обмена данными
ICSPIn-Circuit Serial Programming – Протокол для внутрисхемного последовательного программирования
IIC, I2CInter-Integrated Circuit — Двухпроводный интерфейс обмена данными между микросхемами
PCBPrinted Circuit Board — Печатная плата
PWMPulse Width Modulation — Широтно-импульсная модуляция
SPISerial Peripheral Interface Protocol — Протокол последовательного периферийного интерфейса
USBUniversal Serial Bus — Универсальная последовательная шина
DMADirect Memory Access — Модуль для считывания и записи RAM без задействования процессора
ACAlternating Current — Переменный ток
DCDirect Current — Постоянный ток
FMFrequency Modulation — Частотная модуляция (ЧМ)
AFCAutomatic Frequency Control — Автоматическое управление частотой

Частые вопросы

После регистрации аккаунта на сайте Вы сможете опубликовать свой вопрос или отвечать в существующих темах. Участие абсолютно бесплатное.

Кто отвечает в форуме на вопросы ?

Ответ в тему Регулировка подачи проволоки на сварочном полуавтомате как и все другие советы публикуются всем сообществом. Большинство участников это профессиональные мастера по ремонту и специалисты в области электроники.

Как найти нужную информацию по форуму ?

Возможность поиска по всему сайту и файловому архиву появится после регистрации. В верхнем правом углу будет отображаться форма поиска по сайту.

По каким еще маркам можно спросить ?

По любым. Наиболее частые ответы по популярным брэндам — LG, Samsung, Philips, Toshiba, Sony, Panasonic, Xiaomi, Sharp, JVC, DEXP, TCL, Hisense, и многие другие в том числе китайские модели.

Какие еще файлы я смогу здесь скачать ?

При активном участии в форуме Вам будут доступны дополнительные файлы и разделы, которые не отображаются гостям — схемы, прошивки, справочники, методы и секреты ремонта, типовые неисправности, сервисная информация.

Полезные ссылки

Здесь просто полезные ссылки для мастеров. Ссылки периодически обновляемые, в зависимости от востребованности тем.

Сгорел регулятор подачи проволоки Blueweld 4.165

Помогите разобраться, не могу починить сгоревший регулятор на полуавтомате!
Новый из Италии надо заказывать, 90 дней обещают вести(((.

Перепутали вход питания и выход на моторчик регулятора
подачи сварочной проволоки, регулятор перестал работать.

Вот схему его нашел:

Как я понимаю, на микросхеме HEF 4069 UB собран регулируемый генератор частоты, который открывает мосфет с разной частотой.
Плюс входа и выхода регулятора соединены, а регулируется по массе.
Работает эта схема как ШИМ генератор.
Мосфет открывается, и питает моторчик.
Особенность схемы в довольно высоком напряжении питания — от 42 до 55 вольт. Замерял на сварочнике.

Визуально было видно, что повреждены резисторы внизу от мосфета, обведенные красным. Решил их заменить, а поскольку SMD не нашел поставил обычные на 1 ом. Так же заменил мосфет.

Прозвонил диоды все — живые. Проверил переходы транзистора — звонятся переходы.
Вот схема сварочника.

Подаю питание: ток не регулируется.
Мосфет полностью открыт. На выходе регулятора напряжение равно напряжению на входе.
На стабилитроне есть 12 вольт.
Поменял микросхему. Ничего не поменялось.

Куда копать? Сегодня померяю осциллографом частоту на входе на мосфет, с генератора частоты но думаю, если он открыт там висит единица…

UPD: 1. По всей видимости генератор частоты, после замены микросхемы заработал. Но на выходе все равно напряжение не меняется- мосфет открыт все время !
Подключил осциллограф. на ногу Gate мосфета приходят импульсы амплитудой 11 вольт.
На осциллограмме видно, как меняется широта импульса, в зависимости от положения ползунка резистора.

Отчего то мосфет не работает.

Комментарии 43

Понимаю что прошло уже 5 лет, но чем в итоге всё закончилось, просто проблема аналогичная.

Владелец купил новый регулятор.

Так чем история закончилась?

как вариан фуфло попалось а не нормальный транзистор, левака щас полно продают и можно нарваться

Завтра попробую выпаять и проверить отдельно.

вот все и прояснилось, мосфету хана, в нем похоже при переполюсовке внутренний диод екнулся, кстати он сильно грелся когда работал? я бы туда что-нибудь типа irfp260 поставил

Я не думаю, что он грелся. Мотор небольшой, потребляет до 1 ампера. Кстати, очень странно: мосфет я вчера поменял… Что ему еще надо? Я думал, они не требовательны к условиям работы.

отмыть плату, может где утечка идет, проверить внимательно на сопли, так же диоды еще раз проверить все
D3 можно вообще убрать, он в транзисторе есть
Проверить вообще он запирается или нет, как написано ниже замкнув затвор на минус

У меня такой же лежит регулятор, но так и не смог разобраться, видимо косяк в схеме, читал где-то что у них это проблема основная…

А где вы взяли новый? Сколько обошелся денег?

Новый не нашел, просто перестал пользоваться полуавтоматом…

С наибольшей вероятностью, Q1 у вас пробит, сгоревшие резисторы тому подтверждение. Проверить его проще, замкнув затвор на землю (замкнув резистор в цепи затвора 100 кОм, или к-э Q2 между собой). Если транзистор закроется (мотор подачи перестанет работать) — то Q1 исправен. Также проверьте D3 — он прозванивается без проблем. И убедитесь что на стабилитроне 12 Вольт.

Если Q1 целый, то причиной является неисправность микросхемы 4069. Причиной выхода её из строя, кстати, может быть высохший конденсатор C6.

Я поменял Q1 вчера, вместе с резисторами.Сегодня проверил осциллографом: на затвор приходит импульсы с широтой меняющейся в зависимости от положения переменного резистора. Значит вся схема до затвора заработала. Буду проверять конденсатор и D3.

Кстати, проверьте провод который идёт от стока Q1 (ДВ-) к двигателю — не замкнут ли он где случайно на корпус, на массу…

Хорошо. Хотя провод этот короткий, и не поврежденный.
Спасибо за советы! С ними себя увереннее ощущаешь с незнакомой техникой. Хотя и занимаюсь электроникой, но это немного новое для меня.

Всё получится — вы на правильном пути!

Нужно смотеть генератор импульсов, а конкретно скорее всего кондёр, от скорости его заряда зависит частота на частотном инверторе. Ну похожая проблема может быть если Q2 неисправен, кстати вы говорили звонили переходы — звонятся, коллектор — эммитер звонили? если звонится, то в мусорку. Можно ещё глянуть кондёр под 1к сопротивлением.

Простите, я неверно выразился. Тестером в режиме прозвонки диодов звоняться переходы транзистора как 0,7 вольта. Сегодня генератор импульсов заработал, а Q1 все время открыт. Надо копать выходную часть схемы. Не разу с мосфетами дела не имел.

Да ваще не надо париться ! Тут деталей то кот наплакал ! Заменить ВСЕ полупроводниковые элементы оптом . Там их будет аж на 100 рубаслв . Только теперь надо менять ВСЕ без исключения, даже те что Вы меняли .Роно на 10 минут работы .

Вы дома также делаете? Лампочка перегорела, бежите менять все люстры розетки выключатели и менять проводку?

Как я делаю дома можете посмотреть в блоге или БЖ . А если человек не понимает то ему так будет проще . Или начать курс физики с 5го класса ?

Вы дома также делаете? Лампочка перегорела, бежите менять все люстры розетки выключатели и менять проводку?

я иногда так делаю. особенно, когда приносят блок в работу, а искать конкретную деталюшку некогда. или когда подозрение падает на всякие микрухи, которым надо полдня создавать тестовую обвязку, а цена новой микрухи при этом 50р.
поменял на 100…200р всю подозрительную цепь, за час, отдал заказчику — в итоге всегда всё работает.

Да ваще не надо париться ! Тут деталей то кот наплакал ! Заменить ВСЕ полупроводниковые элементы оптом . Там их будет аж на 100 рубаслв . Только теперь надо менять ВСЕ без исключения, даже те что Вы меняли .Роно на 10 минут работы .

Да, это хоть и неправильно, но я так вчера сделал. Генератор выдает ШИМ модуляцию, а мосфет не реагирует. Похоже, что открыт все время.

Q2 проверьте. При неисправном будет полный шим на полевике.

Наоборот, будет 0 В на затворе и мотор вращаться не будет…

Это если накоротко. Транзисторы обычно выгорают на разрыв.

Да какая разница. «Полный ШИМ», как вы выразились, т.е. постоянный плюс на затворе будет только если с выхода инверторов 4069 приходит такой сигнал. А Q2 стоит в защите по перегрузке по току, он никак не может давать плюс на затвор. Либо он пробит, и затвор сидит на земле, либо он в обрыве — тогда только защита перестанет работать. А плюс-то как он подаст на затвор?

Q2 в зависимости от тока нагрузки обрезает по ширине импульс ШИМа. Если он неисправен, Двигатель будет регулироваться в очень маленьком диапазоне, учитывая, что для поддержания стабильных оборотов ток выбирается примерно из 0,5 максимального. Кроме того, без осциллографа там делать нечего.

Q2 откроется, только когда напряжение на резисторе 0,33 Ом (3 по 1 Ом) в цепи истока Q1 превысит 0,6 В. Т.е. при токе в цепи мотора порядка 2 А. Классическая схема защиты выходного каскада от перегрузки по току.

Но опять же, транзистор Q2 может только ЗАКРЫТЬ полевик Q1, но никак не открыть! Плюса на нём нет. Так что причиной «непрерывного вращения мотора подачи» он быть никак не может. Если его выпаять — все продолжит работать без изменения. Если его закоротить — то мотор подачи встанет.

как ножки у мосфета звонятся? он может быть постоянно открыт в случае, если у него на затворе постоянный плюс. или если у него сопротивление между стоком и истоком 0 (или около того ом).

Во-первых, что значит «ток не регулируется» ? Ток здесь регулируется переключением первички трансформатора и к схеме непосредственного отношения не имеет.
Так же не пойму, нахрена диодный мост в схеме подачи (кстати на плате его не видно)
И как измеряли напряжение на выходе подачи? Отнносительно плюса я ж надеюсь?

Измерьте напряжение на затворе относительно массы — там должен быть ноль или (в случае, если генератор работает) тестер может показать что-то а осцил должен показать прямоугольники.
Также ткните осцом на вход кучки инверторов (DD1.3)

Диодный мост на схеме, как я понимаю, стоит вместо мощного диода защиты от переполюсовки питания: от неправильной полярности питания выгорят нулевые резюки-перемычки, в нормальном включении шунтирующие мост.

Схемного смысла в этом не вижу, думаю, этот мост либо миниатюрнее подходящего диода, либо оказался дешевле.

Вообще не понимаю, зачем ставить какие-то защиты от переполюсовок на платах, мёртво стоящих внутри железного ящика и при нормальной работе не трогаемых годами

Как инженер систем чпу, я вам точно могу сказать — если плата стоит дороже пачки сигарет, защищать её надо. Обязательно найдётся дурак, который влезет, сломает, а потом будет говорить большое спасибо за наличие защиты…

Собираться это должно на заводе, а уважающий себя завод дураков принимать на работу не будет.
Защита от дурака — это хорошо, но а) на любую такую защиту всегда найдётся более глупый дурак :) и б)всюду пихать защиту — это нецелесообразно по многим факторам.

Посмотрите на диод D7 — это именно защитный диод, без вариантов и обсуждений.

DarknessPaladin

Диодный мост на схеме, как я понимаю, стоит вместо мощного диода защиты от переполюсовки питания: от неправильной полярности питания выгорят нулевые резюки-перемычки, в нормальном включении шунтирующие мост.

Схемного смысла в этом не вижу, думаю, этот мост либо миниатюрнее подходящего диода, либо оказался дешевле.

Диодный мост нарисован в схеме из за избыточности схемы. Это для тех сварочников, где на вход подают переменку.

Присмотрелся к схеме, вынужден признать, что вы почти наверняка правы — поскольку защитный диод на схеме есть (D7), как и всё необходимое для питания от переменного тока, хотя и странно, что кондёры после стабилитрона, а не до.

Меня ввёл в некоторое заблуждение факт, что резюки, в отличие от моста, никак не отмечены опциональными (для чего обычно применяется пунктир)

Во-первых, что значит «ток не регулируется» ? Ток здесь регулируется переключением первички трансформатора и к схеме непосредственного отношения не имеет.
Так же не пойму, нахрена диодный мост в схеме подачи (кстати на плате его не видно)
И как измеряли напряжение на выходе подачи? Отнносительно плюса я ж надеюсь?

Измерьте напряжение на затворе относительно массы — там должен быть ноль или (в случае, если генератор работает) тестер может показать что-то а осцил должен показать прямоугольники.
Также ткните осцом на вход кучки инверторов (DD1.3)

Простите, не регулируется напряжение на выходе с мосфета. Диодный мост показан пунктиром, для схемы где приходит переменка. Тут он не запаян.
Нет, напряжение я измерял между выходами на регулятор. Т.е. на разъеме ХР1 1 и 2 вывод — «+» и «-» двигателя.
Генератор показал на затворе относительно массы импульсы с амплитудой 11 вольт. Частота около 12 кГц, меняется их широта.
Мосфет не реагирует на изменение ширины импульсов, хотя я его менял.

Методические рекомендации о принципах настройки классического инверторного полуавтомата для начинающих сварщиков.

В данной статье речь пойдет о моделях полуавтоматов, у которых на панели управления имеются такие регуляторы как:

Панель управления.jpg

  1. регулировка напряжения — voltage;
  2. регулировка тока — current (Стоит отметить, что управление сварочным током в полуавтоматах, более правильно называть регулировкой подачи проволоки);
  3. индуктивность — inductance.

Рассмотрим по какой методике действовать, чтобы успешно настраивать инверторные аппараты с тремя ручками управления (Аналогичное управление встречается в аппаратах серий OVERMAN, SKYWAY, ULTIMATE и на многих других, но алгоритм действий по настройке будут практически одинаковые).

Ниже мы постараемся пояснить как параметры влияют друг на друга и как производить настройку аппарата в различных условиях: разный газ, разные толщины металла и проволоки, разные материалы заготовок. Создадим универсальный алгоритм, по которому шаг за шагом можно будет прийти к желаемому результату.

Настройка полуавтомата. Органы управления.

Сам процесс называется – электродуговая сварка, то есть, чтобы у нас произошла какая-то сварка, нам нужно создать в цепи электрическое напряжение. Если напряжения в цепи не будет, то какую бы ручку (подача проволоки, индуктивность) мы бы не крутили, понятно, что ничего электрического не произойдет.

Поэтому сначала нужно создать напряжение в нашей сети. Конечно, для настройки лучше использовать справочные сварочные таблицы зависимости напряжения и используемого материала. Но когда справочных или табличных данных нет, то начнём проще. В начале мы достаточно приблизительно ставим напряжение. Если материал тонкий, крутим ручку ближе к минимальным значениям. Если материал – средний, то в середине. Если материал толстый, то нам надо взять полную мощность, крутим ручку к максимуму. Но даже к большим мощностям лучше подходить откуда-нибудь с середины.

Voltage.jpg

Кстати, не забывайте выбирать сварочную проволоку того же материала, с которым вы работаете и соответствующего диаметра. Для работы с тонким материалом, проволока также должна быть тонкой. Для стали проволока должна быть стальная, для нержавейки – нержавеющая, для алюминия – алюминиевая.

Вернёмся к напряжению, если материал тонкий – поставим напряжение в начало (ориентировочно). Если нам нужно будет добавить мощность, то мы еще успеем поставить больше.

Далее переходим ко второй ручке.

current.jpg

Чаще всего она называется «сварочный ток» – но на самом деле это никакой не ток. Ручка так называется для простоты восприятия. На самом деле, это регулировка подачи проволоки. Увеличивая или уменьшая эту регулировку, мы просто увеличиваем или уменьшаем напряжение на моторе подающего механизма. В сварочных аппаратах мотор, кстати, используется обыкновенный, коллекторный мотор постоянного тока, как в автомобиле от дворников или от печки на каком-нибудь грузовике. Особенность такого мотора — когда меняется напряжение, меняется скорость вращения, этим мы и занимаемся, крутя эту ручку. Ни с каким инвертором, ни с какими токовыми цепями, ни с какой другой схемотехникой эта ручка никак не связана. Ручка «сварочного тока» — это просто потенциометр, который увеличивает или уменьшает напряжение на моторе. Мотор, соответственно, подаёт проволоку к месту сварки быстрее или медленнее. Собственно, вы можете просто открыть крышку, покрутить ручку и посмотреть, как крутятся ролики.

Итак, напомним, энергию, мощность процесса, который будет происходить в сварочной дуге, температура процесса, частота переноса, длина дуги и т.п. изначально мы получаем регулировкой напряжения. Грубо говоря, сварочное напряжение – это энергия процесса. А второй ручкой, управляя скоростью подающего мотора, мы регулируем перенос плавящегося электрода в сварочную ванну. Если скорость у нас будет очень маленькая, передача будет происходить одиночными, короткими замыканиями, как будто взрывами. Процесс будет такой щелкающий, резко, капли с огромным количеством брызг. Тогда мы плавно прибавляем подачу проволоки и наблюдаем за процессом. Короткие замыкания становятся все чаще и чаще, и наконец, они сливаются в единый звук, похожий на журчание. Идеально — это звук порядка 100 Гц. Вообще, частота бывает от 70 Гц, но диапазон в 120-130 Гц человеческим ухом уже воспринимается, как ровное гудение. В месте сварки нам сразу нам будет заметно, что уменьшилось разбрызгивание и где-то в этой зоне, мы начинаем искать идеальную точку. Рекомендуем поэкспериментировать, поверните ручку «сварочного тока» чуть-чуть вправо, чуть-чуть влево. Сначала движения большие, потом поменьше, повторите чуть-чуть вправо, чуть-чуть влево. Наконец, вы сами найдёте точку с оптимальным переносом. Ведь ручкой подачи скорости мы заниманием настройкой переноса металла в зону сварки.

После того, как мы настроим процесс, мы получим характерную длину дуги. С физической стороны этого явления, для каждой длины дуги будет характерное сопротивление. По известной формуле, поделив напряжение на это сопротивление, мы получим сварочный ток. Вот именно это хотели подсказать инженеры в надписи данной регулировки. Они как бы пытались спрогнозировать, какой будет ток, если будет подобрана правильная подача проволоки. Но бывает, что это сбивает с толку и профессионалов, и любителей. Многие думают, что ток можно подкорректировать, конечно, подкорректировать ток можно, но нельзя сделать это, не разрушая оптимальную настройку напряжения и подачи.

Читайте также  Как найти номер двигателя daewoo nexia

Существует одна единственная оптимальная точка баланса сварочного напряжения и скорости подачи проволоки. Если представить график с двумя пересекающимися кривыми, то их пересечение и небольшая область вокруг этой точки – это и есть сварочный процесс. Немножко гуляет подача, немного гуляет дуга, немножко мы двигаем горелкой все время. Из-за этого опять же меняется длина дуги и меняются токи. Но совершенно неправильно, сказать, например, что мы работали на 90А, а надо на 140А, и просто повернуть одну ручку. Если вы нашли баланс один раз и получили хороший сварочный процесс, то невозможно взять и поднять ток, не нарушая сварочного процесса. Мы собьём оптимальную настройку, мы собьём перенос, либо увеличится разбрызгивание, либо станет очень короткая длина дуги, вместо хорошей укладки, получим подрезы, прожигание или, может произойти утыкание проволоки с периодическими взрывами. После этого можно гадать очень долго, что у произошло, подача не работает или подающий канал горелки забился или еще что-то. На самом деле вы просто расстабилизировали процесс, точнее сбили оптимальную настройку аппарата. Следует помнить, что точка эта она одна, и вы в ее окрестности работаете.

Теперь перейдём к третьей ручке нашего аппарата.

Inductance.jpg

Индуктивность — это динамика инвертора, которой мы также можем вручную управлять. Что же значит «динамика»? На маленьких, у нас очень маленькие капельки они с очень большой частотой переносятся все это понятно и видно на глаз и на слух. Здесь сомнений нет.

Если у нас будет маленькая индуктивность, то мы получим очень маленькие капельки, которые с очень большой частотой переносятся в сварочную ванну. Каждая капля – это всплеск по току и напряжению. Насколько быстро аппарат может сделать подъем напряжения и потом его сброс, настолько же быстро сформированная капелька может переходить от электродной проволоки в сварочную ванну. Выстрелил током, сбросил каплю, выстрелил током, сбросил каплю. Конечно, все это происходит с большой частотой. Чтобы переносить маленькие капельки на небольших токах, соответственно, динамика должна быть высокая, то есть низкая индуктивность. Если у нас большие токи, то капля на дуге растёт большая.

Например, если мы работаем на сварочных токах за 200А, чтобы сгладить разбрызгивание, следует добавить индуктивность. Не забываем работать творчески, начнем с середины регулировки, при необходимости можем выкрутить и на максимум. На максимальных токах избежать полного разбрызгивания металла нам не удастся на простых аппаратах. Подобную задачу может решать только современные синергетические сложные машины, у которых есть соответствующей мощности микропроцессор, которые также могут реализовывать пульсовые технологии, или технологии аналогичные STI, ColdARC, Root. Но сейчас не об этом. Мы говорим об относительно простом инструменте, где мы вручную пытаемся синхронизировать динамику процесса, и надо этим творчески пользоваться. На больших токах еще раз повторим, не удастся сделать разбрызгивание таким же маленьким, как на низких токах, но, тем не менее, иметь хоть какой-то регулятор лучше чем, не иметь ничего вообще. Поэтому Overman, Ultimate и аналогичные аппараты с тремя ручками – уже очень неплохой вариант. В некоторых случаях удается настроиться на очень хорошие режимы.

В частности, на очень маленьких значениях индуктивности, напряжения и подачи проволоки аппарат OVERMAN способен достигать результатов, очень похожих на процесс STT компании Lincoln Electric. Но чтобы повторить такие процессы, сначала, конечно, надо получить большой опыт работы на этих аппаратах, чтобы понимать, как работают современные синергетические инверторные машины с мощным процессором. Если вы до тонкостей понимаете, как работает профессиональная европейская машина, то очень часто вы сможете повторить процесс и на простом аппарате с тремя ручками.

Вы можете ознакомиться с видео «От первого лица», где наглядно представлен взгляд инженера-сварщика Г.К. AURORA на общие принципы настройки полуавтоматов оснащённых тремя ручками настройки (AuroraPRO OVERMAN / SPEEDWAY / SKYWAY)


Регулятор оборотов двигателя для сварочного полуавтомата

вобщем собрал по етой схеме все прекрасно работает, проверял на маломощных теристорах ку202. но при подключении других теристоров т123-320 регулировки нету. в теристорах я не очень силен мало с ними сталкивался собственно вопрос, какым током и сколько вольт нада дать штоб они не сгорели. щас у меня на них идет от 0 до 32 милиампер. —-теристор —

первые опиты полуавтоматом. покамисть без дроселя и конденсаторов. што не так со свом ато както сильно стреляет и искры в разные стороны летят.

Добавлено (28.05.2015, 19:22)
———————————————
есть на форуме люди которые занимаются сваркой отзовитесь.
намотал дросель кинул конденсаторов 30тысяч, варить стало вобще не возможно. дуга горит отлично не стреляет искры не летят звук стал такой типа шшшшшшшшшшшшшш, но метал сразу прогорает и шов не ложится, если ток поменше то проволока просто начинает плавится а не гореть. может такое быть изза тово што пробую без углекислоты. без кондеров очень стреляет но шов приемлемый и нету прогаров(((((((((

Добавлено (28.05.2015, 22:49)
———————————————
а-то и более.и без кислоты у вас неплохо сварило,мой так не сварит.

вопрос в другом, нащет конденсаторов они там вобще нада? без них шов вполне нормальный и подачю проволоки можно поменше ставить и свет менше моргает но очень трещит. с кондерами все наоборот расход проволоки увеличевается шва практически не выходит, потребления тока возрастает но зато не стреляет а красиво шипит. все експеременты без кислоты.
там где прогары то с кондерами.

а ето без кондеров без дроселя, и там и там без кислоты.

Оно и будет стрелять так же как и не возможно прокатится на велосипеде без колес
При тщательно отрегулированном дросселе от кондерев можно отказаться, но повозится придется Ставишь минимальный ток и количеством витков и зазором в дросселе добиваешься идеальной сварки на тонком металле.
В архиве регулятор для трех фаз< работает вполне удовлетворительно.




шов електродом с дроселем и конденсаторами. варит очень приятно по сравнению с переменкой.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector