Регулятор оборотов для двигателя кондиционера

Регулятор оборотов для двигателя кондиционера

Управление двигателем компрессора внешнего блока кондиционера через симистор

Что будет, если попробовать управлять двигателем компрессора внешнего блока кондиционера через симистор (увеличивать и уменьшать обороты в зависимости от необходимой температуры на выходе приточки).

Какие могут быть последствия?

  • Просмотр профиля
  • Личное сообщение

romapres написал :
Что будет, если попробовать управлять двигателем компрессора внешнего блока кондиционера через симистор (увеличивать и уменьшать обороты в зависимости от необходимой температуры на выходе приточки).

А что будет управлять симистором.

Компрессор может сдохнуть. Причём, с весьма высокой вероятностью.

Вообще, регулировка средней температуры при работе НЕ инверторного компрессора осуществляется включением/выключением компрессора. Если бы проблема легко решалась симистором, то наверное не изобретали бы инверторные системы.

  • Просмотр профиля
  • Личное сообщение

DIVAS написал :
А что будет управлять симистором.

У меня на приточной вентиляции будет стоять прибор Термодат для управления нагревом и включения/выключения внешнего блока кондиционера.

У этого прибора есть возможность настроить один из выходов на управление в фазоимпульсном режиме или распределение сетевых периодов (ссм. вложение).

Естественное желание настроить управление двигателем компрессора через фазоимпульсное управление (ограничить диапазон регулировки мощности в пределах 50-100%).

Интересно, были ли у кого подобный опыт?

  • Просмотр профиля
  • Личное сообщение

индуктивную нагрузку такими методами регулировать недопустимо.

  • Просмотр профиля
  • Личное сообщение

Фазоимпульсным методом недопустимо? Как раз этот метод рекомендуют для управления понижающими трансформаторами.

  • Просмотр профиля
  • Личное сообщение

romapres написал :
для управления понижающими трансформаторами.

не понял.схему давай

  • Просмотр профиля
  • Личное сообщение

romapres написал :
Фазоимпульсным методом недопустимо? Как раз этот метод рекомендуют для управления понижающими трансформаторами.

Чтобы эти рекомендации «претворить в жизнь» надо чтобы и двигатель компрессора позволял это сделать. ВЫ же, насколько правильно понял, за основу выбрали пуск/стоповую машину. А в ней двигатель работает только в номинале.

Это мое мнение и его не навязываю

  • Просмотр профиля
  • Личное сообщение

Трансформатор приведен для примера по поводу индуктивной нагрузки. Фазоимпульсный режим рекомендован для управления трансформаторами.

Схема предполагаю следующей:

Регулятор температуры — Теромдат 12K5/1УВ/3Р/1Т

Вопрос у меня следующий: Можно ли управлять двигателем компрессора в фазоимпульсном режиме? Или это не допустимо? Почему?

  • Просмотр профиля
  • Личное сообщение

baziliov написал :
индуктивную нагрузку такими методами регулировать недопустимо.

А обоснование у этой недопустимости есть.

romapres написал :
Как раз этот метод рекомендуют для управления понижающими трансформаторами.

Даже более того, для этого существуют специальные тиристорные регуляторы («специальность» заключается в схеме управления тиристорами).
Впрочем, всё очень сильно зависит от того что на вторичной обмотке трансформатора. Если она хорошо нагружена активной нагрузкой, то индуктивность трансформатора в разы снижается по сравнению с тем же «просто трансформатором» — в этом случае он замечательно регулируется и обычным фазоимпульсным тиристорным регулятором.

Но тем не менее, двигатели таким методом можно регулировать далеко не все. Фазоимпульсным методом могут регулироваться коллекторные и асинхронные двигатели, но не все и не во всех режимах. И двигатель компрессора как раз к регулируемым таким образом двигателям не относится.

romapres написал :
Вопрос у меня следующий: Можно ли управлять двигателем компрессора в фазоимпульсном режиме? Или это не допустимо? Почему?

Есть несколько способов регулировки частоты вращения различных двигателей. Например:

  1. напряжением
  2. частотой

Тиристорный (фазоимпульсный) метод — самый простой, дешёвый и удобный метод. Регулирует, по сути, действующее значение напряжения. Применяется для коллекторных и асинхронных двигателей переменного тока (не для всех, есть и исключения).

В случае асинхронных двигателей этот метод не совсем корректен, т.к. у асинхронных двигателей частота вращения в первую очередь задаётся частотой питающего переменного тока, а не напряжением. А при фазоимпульсном управлении меняется действующее значение напряжения, при этом частота остаётся та же самая. Это вызывает ослабление и «проскальзывание» магнитных полей, то есть по сути регулируется не частота вращения, а крутящий момент. Побочные эффекты: уменьшение усилия на валу, снижение КПД, вибрация и повышенный разогрев обмоток. Данный метод часто применяют для управления асинхронными вентиляторами, поскольку у вентиляторов нагрузка на вал прямо зависит от частоты вращения и наоборот — при уменьшении крутящего момента снижается частота вращения. А при постоянной нагрузке на вал такой метод регулирования приведёт к остановке, перегреву и выходу из строя двигателя.

У коллекторных двигателей частота вращения в большей степени зависит от действующего значения напряжения, и они хорошо регулируются таким методом. Этот метод применяется в электроинструментах (не аккумуляторных).

Другой метод — частотный (инверторный). Переменный ток выпрямляется в постоянный, после чего специально обученный микроконтроллер посредством мощных IGBT-транзисторов снова делает из постоянного тока переменный, но уже любой нужной частоты и как правило три фазы. В промышленности такие регуляторы именуются частотными преобразователями и как правило могут работать в одном из нескольких режимов: регулировка только частоты, частоты и напряжения, частоты и напряжения с контролем тока и т.п. — выбирается нужный, в зависимости от типа двигателя и его режима работы.
В основном таким способом регулируются асинхронные двигатели в силовых установках, но могут быть и другие варианты. При такой регулировке изменяется именно частота вращения двигателя, а не крутящий момент.

Поскольку компрессор обычного старт-стопного кондея сделан на базе разновидности асинхронного двигателя и работает в режиме постоянной механической нагрузки, его нельзя регулировать напряжением. Но и частотным методом нельзя: двигатель с конденсаторной схемой включения может работать только на фиксированной частоте.

В инверторных кондиционерах применяются другие компрессоры и специально заточенная под применяемые в них двигатели схема управления.

Мотор (электродвигатель) вентилятора кондиционера: разновидности и причины неполадок

Тип двигателя кондиционера влияет на мощность и громкость работы устройства, а также на расход энергии. Есть несколько типов моторов: коллекторный, асинхронный и инверторный. Зная их плюсы и минусы, потребителю будет легче определиться с выбором.

Коллекторный тип двигателя

Коллекторный электродвигатель кондиционера обладает большим пусковым крутящим элементом без специальных модификаций. Его просто настраивать, за что в прошлом он был популярен у производителей бытовой техники.

С развитием технологий коллекторный двигатель стал менее востребованным по нескольким причинам:

  • Максимальная производительность составляет 40 тыс. оборотов в минуту. Для кондиционера этого мало. К примеру, такое количество оборотов сопоставимо с работой центробежной соковыжималки.
  • Коллекторные двигатели не терпят агрессивную среду, что в городских условиях эксплуатации быстро приводит устройство к поломке.

Асинхронный тип двигателя

Сам по себе асинхронный двигатель обладает слабыми пусковыми характеристиками, из-за чего требуется большое количество электроэнергии для его полноценного запуска. Применение в кондиционерах нерационально.

Конструкторы пробовали решить проблему. Однако повышенная мощность асинхронного двигателя требовала усиленного охлаждения, что опять вело к большим затратам энергии. Регулировочную характеристику ухудшало повышение активного сопротивления ротора.

Инверторный тип двигателя

В зависимости от тепловой нагрузки в помещении автоматически регулируется скорость вращения мотора компрессора. Она переходит в форсированный режим до тех пор, пока не будет достигнута установленная пользователем температура.

Достигнув заданных значений, двигатель вентилятора кондиционера снижает скорость, при этом поддерживается нужная температура. Это позволяет экономить электроэнергию, так как не происходит постоянного включения и выключения компрессора.

Кондиционеры, работающие по типу включения компрессора для достижения нужной температуры, а затем его выключения, быстрее изнашиваются. Это связано с тем, что при запуске первые секунды устройство работает без смазки, так как масло из компрессора стекает в картер.

Принцип работы

Использование блока силовой электроники позволяет инверторному двигателю выполнять два последовательных действия.

Сначала образуется постоянный ток за счёт сетевого переменного напряжения. Затем переменный ток необходимой частоты формируется из получившегося постоянного напряжения.

Силовой инверторный блок, как и любой другой преобразователь, имеет менее 100% КПД. При долгой беспрерывной работе на максимальной скорости кондиционер с инверторным типом двигателя потеряет около 10-15% эффективности по сравнению с устройствами другого типа.

Инверторный кондиционер после достижения указанной температуры работает в режиме сниженной мощности компрессора, а другие типы двигателей используют цикличный режим.

Неинверторный кондиционер во время начала работы испытывает максимальную нагрузку во время переходных процессов: как электромеханических, так и термодинамических.

Ротор требует полной отдачи от всех механизмов, при этом им требуется перекачать до 50% фреона в зону высокого давления из зоны низкого давления. Во время всех этих процессов холод ещё не начинает вырабатываться.

Достигнув нужных показателей, система через дросселирующее устройство выравнивает давление в верхней и нижней зонах.

Кипение фреона может происходить в тех частях кондиционера, где он не требуется: ресивер, капиллярная трубка, магистраль. Это связано с тем, что давление во время запуска слишком высокое.

Холод некоторое время используется не по назначению: идёт охлаждение компрессионного отсека, внешнего блока и т.п. В результате производительность снижается.

Почему стоит выбрать инверторный кондиционер

Следует выделить положительные и отрицательные стороны инверторного кондиционера.

  • более продолжительный срок службы по сравнению с моторами других типов: 8-12 лет против 6-9 лет;
  • при правильной установке мощности кондиционера возможна значительная экономия электроэнергии без ущерба для комфорта;

Положительных сторон у инверторного двигателя внутреннего блока кондиционера много, однако есть и минусы, которые следует учитывать:

  • длительный ремонт в случае поломки из-за частого отсутствия деталей на рынке; иногда ожидание нужной запчасти затягивается на несколько месяцев;
  • при длительной эксплуатации без выключения начинается повышенное потребление электроэнергии;
  • в связи со сложностью электронных устройств, используемых в начинке двигателя, он чувствителен к резким скачкам напряжения и может из-за них выйти из строя;
  • кондиционеры с инверторным типом двигателя стоят дороже других систем для охлаждения и нагрева воздуха.

Причины неполадок

Мастера по ремонту кондиционеров выделяют несколько возможных вариантов, из-за которых случаются неполадки:

  • При люфте вала двигателя или нехарактерных шумах следует поменять подшипники.
  • Если двигатель перестал вращаться, потребуется сменить пусковые конденсаторы.
  • В случае, когда мотор вентилятора кондиционера останавливается через несколько секунд после запуска – неисправен датчик Холла. Этот электронный модуль отвечает за экстренное отключение двигателя в случае неполадок, предотвращая его поломку.

Самостоятельно браться за работу, если нет специальных знаний, не стоит. Следует доверить дело мастеру.

Подбор двигателя вентилятора кондиционера

В сплит-системе двигатель находится как в наружном, так и во внутреннем блоке. Двигатель вентилятора наружного блока кондиционера делается из металла, а внутреннего – из прочного пластика.

  • Много-обмоточный: разная скорость вращения вентилятора получается за счёт подачи энергии на различные обмотки.
  • DC-inverter – чаще всего применяется в инверторных двигателях. За счёт изменения амплитуды постоянного напряжения регулируется скорость вращения.
  • PG-motor – с помощью регулирующего элемента (симистор или тиристор) подаётся напряжение через обмотку, состоящую из двух частей. Разные скорости вращения вентилятора достигаются благодаря изменению амплитуды управляющего напряжения.

Вооружившись знаниями, пользователь сможет легко выбрать двигатель для кондиционера и вовремя обнаружить неполадки в системе.

Регулировка скорости вентилятора на пульте кондиционера

Бытовые кондиционеры уже давно перешли из разряда предметов роскоши в разряд бытовых приборов, необходимых в каждой квартире. В городах, где воздух с улицы давно перестал быть чистым, проще и надежнее регулировать температуру воздуха в жилых помещениях с помощью кондиционера. Сплит-систему покупают в основном для охлаждения комнаты в жаркие месяцы, но многие используют их для нагрева воздуха в холодную пору.

Fan speed

Зачастую на пультах управления кондиционерами надписи кнопок обозначены по-английски, что серьезно затрудняет использование его человеком, говорящим и читающим только на русском языке. Например, надпись «Fan Speed», в переводе на русский обозначает скорость вентилятора. Этой кнопкой на пульте регулируются обороты вращения вентилятора (вала) внутреннего блока. Так же эта функция может быть обозначена надписями «Fan», «Speed» или каким-либо значком отображающего вентилятор.

Эта кнопка не регулирует температуру, т.е. какую бы скорость не задали, будет поддерживаться настроенная температура (которая высвечивается на пульте). Но с помощью изменения скорости возможно ускорить или замедлить время охлаждения помещения до заданной температуры.

Кнопки на кондиционере

Бытовой кондиционер можно включить простой кнопкой на его корпусе, но такое включение чаще активирует его в режиме охлаждения или авто, что ограничивает его функциональность. Правильным же способом управления кондиционером будет использование его пульта. Но для человека неподготовленного пульт будет «китайской грамотой», с которой сложно совладать без помощи инструкции или интернета.

Регулировка скорости вентилятора на пульте кондиционера

Существуют сотни кондиционеров, которые имеют уникальные формы пультов управления, но общепринятые негласные правила заставляют производителей делать одинаковые надписи на кнопках, лишь меняя их положение или форму. Это делается для того, чтобы пользователь, который освоил управление кондиционером с помощью одного пульта, мог с такой же легкостью управлять и кондиционером другого производителя. В большинстве странах надписи на пульте будут на английском языке, который понимают практически во всём мире. Таким образом, человек, освоивший один пульт, сможет впоследствии воспользоваться любым кондиционером в мире.

В этой статье я более подробно рассмотрю функции пульта от кондиционера Samsung и значение его кнопок. Чаще всего на пульте от «сплита» присутствует жидкокристаллический монохромный экран, а остальное место занято различными кнопками:

Регулировка скорости вентилятора на пульте кондиционера

  • Power (Питание). При ее активации кондиционер выходит в тот режим работы, при котором он был выключен. Например, если кондиционер перед выключением работал на охлаждении до температуры +20°С, то при активации он продолжит работать в этом же режиме.
  • Mode (Режим). Это одна из самых важных опций. При ее нажатии происходит смена режима работы последовательно: Auto (Авто), Cool (Охлаждение), Dry (Сушка), Fan (Вентилирование), Heat (Обогрев).
  • Smart Saver (Умный эконом). При ее включении активируется режим экономии электричества (t +24 +30°С), поддерживающий прохладу.
  • Turbo (Турбо). Исходя из названия, эта кнопка активирует самую высокую скорость вентилятора и обеспечивает быстрое снижение температуры по желанию владельца.
  • Auto Clean (Авто чистка). Эта функция гарантирует чистоту внутренних частей аппарата, благодаря работе вентилятора после выключения «кондёра».
  • Quiet (Тихий режим). Благодаря ей выполнение заданных операций проходит при минимальном уровне шума.
  • Air Swing (Положение жалюзи). С помощью этой кнопки регулируется положение «шторок» кондиционера, что позволяет направить потоки холодного или горячего воздуха на разную высоту или в разных направлениях.
  • Temp (Температура). Эта кнопка позволит выставить необходимую температуру.
  • Fan (Вентилятор). Кнопка Fan на пульте кондиционера даст возможность регулировать скорость работы вентилятора (его так же называют «вал» или «крыльчатка»).
  • Good Sleep. Настраивает работу кондиционера, когда его хозяин спит.
  • On Timer (Включение таймера). По этой кнопке заранее настроенный таймер активируется.
  • Off Timer (Отключение таймера). При нажатии этой кнопки функции таймера отключаются.
  • Time Up (Время вперед) и кнопка Time Down (Время назад). Обе кнопки нужны для настройки таймера.

Fan speed на кондиционере

Кнопка Fan (или Fan speed) на пульте кондиционера занимает особое место, именно она регулирует скорость распространения воздуха в помещении при включении кондиционера. Не нужно путать режим кондиционера Fan (который активируется кнопкой Mode) с кнопкой Fan вращения вентилятора. Это две различные функции, и назначения у них разные.

Регулировка скорости вентилятора на пульте кондиционера

При нажатии на кнопку Fan изменяется скорость работы вентилятора кондиционера, задачей которого является распространение охлажденного или нагретого воздуха внутри комнаты. При каждом нажатии кнопки включается последующий режим (следующая скорость), и так циклично по кругу они сменяют друг друга. Существуют следующие режимы работы вентилятора:

  • Auto (Авто). При выборе этой скорости кондиционер самостоятельно изменяет обороты вентилятора в зависимости от алгоритма (может зависеть от текущей температуры в комнате). Не путаем Auto скорость вентилятора и Auto режим работы сплит-системы!
  • Если включить «кондёр» в режиме Low (Слабый), то вентилятор будет работать на минимальных оборотах. Такой режим лучше всего устанавливать во время отдыха (включая сон) или при нахождении людей в спокойном состоянии. В этом случае «градус» в помещении будет меняться очень медленно, не беспокоя владельцев.
  • В режиме Medium (Средний) вентилятор работает на средних оборотах и довольно быстро охлаждает или нагревает помещение, в зависимости от выставленной температуры. Можно сказать сбалансированная скорость. Эта кнопка часто отображается на пульте сокращенно — Med
  • Режим High (Сильный) на кондиционере служит для самого быстрого распространения нагретого или охлажденного воздуха по помещению и характеризуется самой высокой скоростью работы вала. В таком режиме он будет издавать много шума. Лучше всего включать такую скорость, когда в помещении нет людей.

Регулировка скорости вентилятора на пульте кондиционера

На многих пультах скорость на дисплее отображается в виде шкалы!

Важно понимать, что кнопка Fan всего лишь меняет скорость работы вентилятора, а, следовательно, и скорость распространения воздуха. Она никак не влияет на температурный режим работы кондиционера или любые другие функции. Так же эта кнопка никак не влияет на скорость вращения внешнего блока – он работает независимо по своим алгоритмам.

Рекомендации

Владельцы кондиционеров редко задумывается о том, каким образом эти приборы влияют на здоровье своих хозяев. Исходя из опыта пользования можно вывести несколько важных рекомендаций по эксплуатации кондиционеров:

Регулятор холостого хода (РХХ) — как работает, неисправности, симптомы, проверка

Во всех современных автомобилях есть регулятор, поддерживающий обороты холостого хода. Если ХХ теряет стабильность, возможно причина в датчике. Чтобы узнать это, нужно проверить регулятор холостого хода (РХХ).

регулятор хх

Виды и конструкции РХХ

Внешний вид датчика напоминает электрический двигатель, имеющий коническую иглу. Прибор ответственен за подачу нужного количества воздуха в обход дроссельной заслонки на холостом ходу.

Существуют несколько разновидностей подобных датчиков:

  1. На основе соленоида. Это наиболее простой вариант устройства. При подаче напряжения на обмотки прибора срабатывает сердечник и помещается в специальное гнездо для сокращения диаметра проходного канала. В результате становится меньше объём подачи воздуха. Данный регулятор стоит дёшево из-за простоты конструкции. Работает этот прибор только в закрытом либо открытом положении.
  2. Шаговый. В него входят обмотки и кольцевой магнит. Вращение основного ротора происходит благодаря шаговой подачи напряжения на все элементы конструкции под воздействием электромагнитной силы. Открытие воздушного протока регулируется исполняющим механизмом в зависимости от того, где расположен ротор.
  3. Роторный. Подача воздуха регулируется поочерёдными частотными импульсами. Конструкция датчика похожа на соленоидную PXX. Главную роль в конструкции играет ротор.

Как работает регулятор

Когда двигатель работает на холостом ходу, через дополнительный канал подачи воздуха в обход закрытой заслонки дросселя, в двигатель поступает воздух, необходимый для его стабильной работы. Сечение этого канала регулируется РХХ. Количество воздуха учитывается датчиком массового расхода воздуха (ДМРВ). В соответствии с его количеством, контроллер подаёт топливо в двигатель через топливные форсунки.

схема работы рхх

По датчику положения коленчатого вала (ДПКВ) контроллер отслеживает количество оборотов двигателя. В зависимости от заданного режима работает РХХ, добавляя или снижая подачу воздуха в обход закрытой дроссельной заслонки .

На прогретом до рабочей температуры двигателе, контроллер поддерживает обороты холостого хода. Если же двигатель не прогрет, контроллер за счет регулятора увеличивает обороты, обеспечивая его прогрев на повышенных оборотах.

Признаки неисправности

Регулятор холостого хода является исполнительным устройством и его самодиагностика в системе не предусмотрена. Поэтому при неисправностях регулятора холостого хода часто лампа «CHECK ENGINE» не загорается. Симптомы неисправностей регулятора холостого хода во многом схожи с неисправностями ДПДЗ (датчика положения дроссельной заслонки), но во втором случае чаще всего на неисправность ДПДЗ явно указывает лампа «CHECK ENGINE».

Симптомы проблем с РХХ:

  • плавающий холостой ход;
  • плохой запуск двигателя, особенно зимой;
  • машина может глохнуть при сбросе газа, после переключения на нейтраль;
  • неконтролируемое повышение или понижение оборотов ХХ при штатной температуре двигателя;
  • падение оборотов после включения фар, кондиционера, отопительной системы;
  • дёрганье машины на ходу при небольших оборотах;
  • мотор глохнет при переходе с низшей передачи на высшую и наоборот.

Приведённые признаки могут проявляться все сразу, либо по отдельности.

Диагностика датчика

Проверить клапан холостого хода можно самостоятельно. Его неисправности можно разделить на две части: механические и электрические. Есть несколько методов проверки.

Визуальный осмотр

Для начала необходимо провести визуальный осмотр. Таким образом можно обнаружить дефекты корпуса, износ иглы, образование нагара. В случае образования отложений, почистить можно средством очистки карбюратора. Также рекомендуется почистить весь дроссельный узел, т. к. он в похожем состоянии.

рхх с нагаром

Использование диагностических программ

Работу РХХ можно проверить с помощью диагностического адаптера и специальных программ. Например, можно использовать самый простой адаптер ELM327 и программу OpenDiagMobile. В меню программы нужно выбрать желаемое положение регулятора ХХ и посмотреть за работой клапана. Лучше выставлять минимум на 20 шагов больше, чем текущее положение.

Проверка проводки

Для этого нам понадобится мультиметр. На заглушенном двигателе снимаем разъём с датчика. Выставляем на измерительном приборе предел измерения 0-20 В постоянного напряжения. Измеряем напряжение на разъеме. В обычном случае должно быть 12 В.

измерение напряжения на проводке рхх

Проверка сопротивления регулятора

Для этого нам понадобится измерить сопротивление между выводами A, B, а также C и D после отсоединения клеммы датчика. Мультиметр переводим в положение измерения сопротивления на пределе 0-200 Ом (Ω).

схема измерения сопротивления рхх

Нормальным значением является показатель в пределах 50-55 Ом. Сопротивление между A и C, B и D должно быть равно бесконечности.

Проверка с дроссельным узлом

Есть ещё один способ диагностики РХХ. Для этого понадобится снять дроссельный узел со шпилек вместе с датчиком.

дроссельный узел

При подключении разъема клапана и включении/отключении зажигания можно вживую наблюдать за работой РХХ. Посмотреть как работает игла, не затирает ли где-нибудь, проверить равномерность хода, услышать подозрительные звуки.

Калибровка нового РХХ

Что делать, если в результате проверки выяснилось, что датчик подлежит замене? Нужно откалибровать его.

расстояние штока Рхх

  1. Проверяем расстояние от конца штока до монтажной пластины, оно должно быть не более 23мм.
  2. Отключаем минус от аккумулятора, обесточивая ЭБУ.
  3. Устанавливаем регулятор.
  4. Подключаем аккумулятор обратно.
  5. Включаем зажигание на 5 сек, не заводя двигатель. В это время происходит калибровка РХХ.
  6. Выключаем зажигание, завершая калибровку.
  7. Заводим двигатель и наблюдаем за холостым ходом.

Теперь вы знаете как работает регулятор холостого хода, как его проверить и в случае необходимости заменить. Как вы поняли в этом нет ничего сложного и все операции доступны даже начинающему автолюбителю.

Напоследок, видео о диагностике РХХ:

Читайте также  Схема двигателя мопеда дельта альфа
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector