Регулировка оборотов асинхронного двигателя насоса

Регулировка оборотов асинхронного двигателя насоса

Регулирование частоты вращения асинхронного двигателя изменением скольжения

Регулирование частоты вращения асинхронного двигателя изменением скольжения является одним из простых способов регулирования. В то же время при изменении (увеличении) скольжения в соответствии с формулами (32), (34) изменяются (увеличиваются) потери в обмотке ротора, что приводит к уменьшению КПД при регулировании. Регулирование скольжения можно осуществлять как со стороны статора, так и со стороны ротора. Естественно, что во втором случае ротор должен быть фазным и иметь выведенную на контактные кольца обмотку.

При регулировании со стороны статора изменяют приложенное к его обмотке напряжение. Увеличение напряжения сверх номинального приводит к насыщению магнитной цепи двигателя и потому не применяется. Для регулирования частоты вращения асинхронного двигателя уменьшают напряжение питания. При этом развиваемый двигателем момент изменяется пропорционально квадрату напряжения и соответственно изменяются механические характеристики двигателя (рис. 28,а), в результате чего изменяются и значения рабочих скольжений. Очевидно, что регулирование возможно в диапазоне изменения скольжения от 0 до sкр. Для получения достаточно большого диапазона изменения частоты вращения необходимо увеличивать sкр, т. е. применять двигатели с повышенным скольжением типа 4АС (рис. 28,б).

Рис. 28. Механические характеристики асинхронных двигателей при различных значениях первичного напряжения: а — двигатель нормального исполнения; б — двигатель с повышенным скольжением

Этот метод регулирования частоты вращения асинхронного двигателя применяется также для двигателей с фазным ротором, причем в этом случае в цепь ротора включаются добавочные сопротивления для увеличения sкр.

В связи с пониженным КПД и трудностями регулирования напряжения рассматриваемый метод применяется только для двигателей относительно малой мощности. При этом для регулирования U1 можно использовать регулируемые автотрансформаторы или резисторы, включенные последовательно в первичную цепь, а также реакторы насыщения, регулируемые путем подмагничивания постоянным током (магнитные усилители). При изменении постоянного тока подмагничивания индуктивное сопротивление реактора изменяется, что приводит к изменению напряжения на зажимах двигателя. Путем автоматического регулирования тока подмагничивания можно расширить зону регулирования частоты вращения в область s>sкр и получить при этом, жесткие механические характеристики.

Кроме магнитных усилителей применяются также управляемые и полууправляемые полупроводниковые регуляторы напряжения, также позволяющие в широком диапазоне регулировать приложенное напряжение и осуществлять автоматическое регулирование частоты вращения двигателя .

Частным случаем рассмотренного способа является импульсное регулирование частоты вращения, при котором асинхронный двигатель периодически подключается к сети и отключается от нее. При этом двигатель постоянно находится в переходном режиме ускорения (подключен к сети) или торможения (отключен от сети). Подбирая соотношение времени включения ко времени отсутствия питания, можно регулировать среднюю частоту вращения двигателя в широком диапазоне.

При регулировании со стороны ротора в основном применяется реостатное регулирование частоты вращения путем введения в цепь обмотки ротора добавочных активных сопротивлений (резисторов). При этом важно заметить, что изменение в широких пределах частоты вращения двигателя при данном способе регулирования не повлечет за собой изменения максимального (критического) момента Мmах (см. рис. 22). Таким образом, перегрузочная способность двигателя при регулировании не снижается.

Если асинхронный двигатель работает с некоторым приводимым механизмом на валу со статическим моментом сопротивления Мс (см. рис. 22), то на естественной характеристике установившемуся режиму его работы будет соответствовать точка 1. При введении добавочных сопротивлений — резисторов Rд1 — Rд3 — в цепь ротора произойдет соответствующий переход двигателя в новые режимы работы с меньшими частотами вращения: n1>n2>n3>n4. Характеристики двигателя по мере увеличения сопротивления резисторов в цепи ротора Rд становятся более мягкими. Наиболее жесткой характеристикой в данном случае будет естественная характеристика.

Работа двигателя на естественной характеристике в данном случае будет наиболее стабильной и устойчивой. Это означает, что при изменении момента сопротивления Мс в процессе работы производственного механизма отклонения частоты вращения двигателя будут минимальными.

Технические показатели данного способа регулирования следующие:

  • диапазон регулирования сравнительно небольшой — порядка 2 : 1 и ограничивается вероятностью нестабильности работы двигателя при больших значениях сопротивлений резисторов Rд;
  • плавность регулирования при реостатном регулировании небольшая и определяется числом ступеней регулирования. Переключение ступеней осуществляется, как правило, с помощью магнитных контроллеров, контакторов и реле.

Кроме реостатного регулирования применяется регулирование частоты вращения путем введения добавочной ЭДС в обмотку ротора асинхронного двигателя.

Регулирование частоты вращения асинхронного двигателя путем увеличения его скольжения всегда связано с выделением во вторичной цепи двигателя значительной электрической мощности скольжения Ps= sPэм, большая часть которой при реостатном регулировании теряется в реостате. Поэтому, естественно, возникает мысль о полезном использовании этой мощности и о повышении таким образом КПД установки.

Полезное использование мощности скольжения возможно, если вместо реостата присоединить к контактным кольцам ротора двигателя приемник электрической энергии в виде вспомогательной электрической машины. Эта машина должна работать в режиме двигателя, обеспечивая требуемое напряжение на своих зажимах (и соответственно на контактных кольцах самого асинхронного двигателя).

Поясним, как влияет на работу асинхронного двигателя введение добавочной ЭДС Eд в обмотку ротора, при условии, что частота Eд всегда равна частоте токов ротора f2 = sf1.

Пусть в отсутствие ЭДС Eд по цепи ротора протекает ток I2, определяемый в соответствии с формулой (25) как I2=sE2/(r2+jsx2). Этот ток, взаимодействуя с полем обмотки статора, создает электромагнитный момент М, численно равный моменту сопротивления нагрузки Мс, так что двигатель работает при некоторой частоте вращения n.

Если теперь во вторичную цепь ввести ЭДС Eд встречно ЭДС скольжения E2s в этой же цепи, то вторичный ток

в первый момент времени уменьшится. Поэтому развиваемый двигателем момент М также уменьшится, двигатель начнет тормозиться, а скольжение s увеличиваться. При этом согласно равенству (56) ток I2, а вместе с ним и момент М будут увеличиваться. Это будет происходить до тех пор, пока опять не наступит равновесие моментов на валу: М=Мс. Двигатель при этом будет работать с увеличенным скольжением s. Очевидно, что регулированием Eд можно регулировать s и, следовательно, частоту вращения двигателя.

Предположим теперь, что ЭДС Ед имеет по сравнению с рассмотренным случаем противоположное направление и совпадает по фазе с ЭДС sE2. Тогда вместо (56) получаем

В первый момент после введения ЭДС Eд ток I2 и момент М возрастут, асинхронный двигатель будет ускоряться и s будет уменьшаться. При достаточной величине Ед величина s уменьшится до нуля, и если ток I2, создаваемый в этом случае только за счет действия Eд, все еще будет велик по сравнению с током, необходимым для создания момента М=Mс, то ускорение двигателя будет продолжаться и скорость превысит синхронную. Скольжение s и ЭДС E2s при этом изменят знаки и будут расти по абсолютной величине до тех пор, пока в соответствии с выражением (57) ток не упадет до необходимой величины. При s<0 угол отрицательный (см. векторную диаграмму вторичной цепи двигателя, показанную на рис. 18). Ток I2 при этом будет иметь составляющую, совпадающую с потоком Ф. Поэтому намагничивающий ток, потребляемый из первичной цепи, уменьшится и cos φ двигателя повысится.

Таким образом, с помощью добавочной ЭДС Eд путем изменения ее значения и направления можно осуществить плавное двухзонное регулирование частоты вращения двигателя ниже и выше синхронной.

Реализация этого весьма экономичного способа регулирования частоты вращения сопряжена с усложнением схемы регулирования и требует применения электромеханического (электромашинного) или вентильного каскада для преобразования выделяемой при регулировании мощности потерь скольжения в полезную электрическую или механическую мощность. Каскадные установки выполняются на мощности до тысяч киловатт с диапазоном регулирования частоты вращения порядка 3 : 1.

Зависимость рабочих характеристик насоса от частоты вращения

Частота вращения и зависимость рабочих характеристик насоса от частоты вращения

Частота вращения насоса представляет собой число оборотов вала насоса в единицу времени, обозначается литерой n и измеряется в оборотах в минуту (об/мин). Частота вращения насосов, приводимых в действие индукционными двигателями с частотой питающего напряжения 50Гц, составляет 2750 — 2950 оборотов в минуту для 2-х полюсного двигателя и 1375 — 1475 оборотов в минуту для 4-х полюсного двигателя. Другая частота вращения вала двигателя также допускается для работы насосного оборудования при соблюдении и в пределах расчетных ограничений.

Из курса электротехники общеизвестно, что частота вращения магнитного поля в электродвигателе пропорциональна напряжению питающей цепи. При частоте напряжения в сети 50 Гц синхронная частота n1 вращения магнитного поля составляет 3000 оборотов в минуту. Так как насосы приводятся в действие в подавляющем большинстве случаев асинхронными двигателями частота вращения вала асинхронного двигателя всегда будет ниже синхронной частоты вращения магнитного поля с учетом величины скольжения. Вращение ротора асинхронного двигателя связано формулой с числом пар полюсов, скольжением и частотой питающего напряжения:

Формула показывает, что для изменения частоты вращения вала асинхронного двигателя достаточно внести изменения в количество пар полюсов (p), скольжение ротора (s) или изменить частоту питающего напряжения (f1).

Регулирование оборотов электродвигателя путем изменения числа пар полюсов позволяет получить только ступенчатое изменение скорости вращения, что часто оказывается неприемлемым для обеспечения требуемых параметров работы электронасоса. Исключение составляет ряд циркуляционных насосов, допускающих ступенчатое регулирование. Для асинхронных двигателей насосов с короткозамкнутым ротором регулирование числа оборотов двигателя изменением скольжения не применяется. Изменение частоты питающего напряжения — наиболее приемлемый, эффективный и совершенный способ регулирования, позволяющий обеспечить бесступенчатое плавное изменение гидравлических, электрических и механических характеристик электронасоса. Но на сегодняшний день этот способ регулирования требует применения дополнительного оборудования управления — преобразователя частоты асинхронного двигателя.

В отсутствии влияния кавитации на работу насоса изменение частоты вращения электродвигателя будет сопровождаться изменением характеристик насоса в соответствии с законами подобия:

1. Производительность Q пропорциональна отношению частоты вращения:

2. Манометрический напор H пропорционален отношению частоты вращения в квадрате:

3. Потребляемая мощность N пропорциональна отношению частоты вращения в кубе:

Как видно из формул подобия незначительное изменение частоты вращения вала сопровождается значительными изменениями в потреблении электроэнергии. Например, центробежный насос, работающий с питанием от сети 50 Гц, со скоростью оборотов двигателя 2950 об/мин, при уменьшении частоты в сети до 40 Гц, снизит число оборотов, соответственно, до 2360 об/мин и производительность на 20%. При этом в соответствии с законами подобия потребление энергии сократится на 50%.

Основы применения частотных преобразователей в насосных установках

В данной статье мы попытаемся разобраться с основами применения преобразователей частоты (частотно-регулируемого привода) в насосных установках.

Насосы и насосные установки

Определимся для начала с основными понятиями и принципами.

Насосная установка – это совокупность насосных агрегатов, трубопроводов, запорно-регулирующей арматуры, КИП, устройств управления и защиты.

Насосная установка характеризуется двумя основными параметрами: подача и напор.

Подача – это объем жидкости который способна перекачать насосная станция за единицу времени, измеряется в куб. метр / час.

Напор – это энергия необходимая для подъема жидкости на заданную высоту с преодолением сил трения в трубопроводной арматуре, измеряется в метрах. Напор и давление связаны между собой соотношением:

где H – напор; P – давление насоса; ρ – плотность жидкости; g – ускорение свободного падения.

Насосные установки по назначение делятся на:

  • Водопроводные (ВНС) – это насосные станции которые подают воду от водоема до очистных сооружений (ВНС I подъема) и от очистных сооружений в распределительную сеть трубопроводов (ВНС II подъема). Так же существуют промежуточные повысительные насосные станции, в случае когда необходимо создать достаточное давление для поднятия воды на требуемую высоту.
  • Канализационные (КНС) – перекачивают сточные воды к месту очистки.
  • Теплофикационные – предназначены для подачи горячей воды в системе горячего водоснабжения и отопления.
  • Технологические – насосные станции для перекачки различных жидкостей в технологических процессах.

Основы применения частотных преобразователей в насосных установках

Главная КНС Нижнего Новгорода

По виду рабочей камеры насосы делятся на динамические и объемные, те в свою очередь на лопастные, электромагнитные, трения, крыльчатые, роторные, возвратно-поступательные и другие.

В наше время чаще всего используются лопастные насосы: центробежные и осевые.

В основе работы центробежного насоса лежит действие центробежной силы на перекачиваемую жидкость. При вращении рабочего колеса жидкость приходит во вращение и под действием центробежной силы перемещается от центра колеса на периферию, а далее в напорную трубу.

Жидкость в осевом насосе перемещается вдоль оси насоса за счет воздействия лопастей рабочего колеса и создания разности давления под и над лопастью. По принципу работы он схож с пропеллером самолета или бытовым вентилятором.

Основной характеристикой насоса является зависимость напора от подачи, которая называется напорно-расходной.

Основы применения частотных преобразователей в насосных установках

Пример напорно-расходной характеристики насоса

В качестве электропривода насосов в основном используются асинхронные двигатели с короткозамкнутым ротором и синхронные двигатели переменного тока. Реже используются асинхронные двигатели с фазным ротором.

В статье мы рассмотрим работу насосных установок на примере центробежных насосов.

Режимы работы

Теперь рассмотрим режимы работы насосных установок и определимся от чего зависит тот или иной режим.

Режим работы насосных установок зависит либо от изменения расхода у потребителей, либо от притока сточной жидкости, в случае с канализационными насосными станциями.

Режимы водопотребления характеризуются временными графиками и бывают суточными, недельными, месячными и т.д.

Основы применения частотных преобразователей в насосных установках

Пример суточного графика водопотребления за трое суток

Подача насосных установок, работающих без промежуточных емкостей, должна быть равна потреблению. При увеличении потребления подачу необходимо увеличивать, при этом также увеличиваются потери напора в трубопроводах. Поэтому следует также увеличивать давление, которое развивают насосные установки. При уменьшении водопотребления следует снизить подачу и давление.

Ранее для регулирования характеристик насосных установок использовалось изменение числа работающих насосов и степени открытия задвижек. Теперь с появлением частотных преобразователей регулируется частота вращения рабочих колес насосов.

При работе с промежуточной (аккумулирующей) емкостью подача насосной установки отличается от потребления. В этом случае, если нет частотных преобразователей, насосные агрегаты включаются, когда уровень воды достиг минимальной отметки, и отключаются, когда уровень достигает верхней заданной отметки, и так далее по циклу.Таких циклов в сутки может быть до 50, а в некоторых случаях и до 100. Такое количество пусков, особенно для двигателей большой мощности, негативно сказывается на состоянии электроприводов.

Изменение характеристик центробежных насосов можно осуществить двумя способами: изменением степени открытия задвижки на напорном трубопроводе и изменением частоты вращения рабочего колеса насоса.

  • регулирование задвижкой (дросселирование) – уменьшая степень открытия задвижки, мы уменьшаем подачу насоса, напор перед задвижкой увеличивается, а после задвижки уменьшается из-за потери напора на запорной арматуре. Открывая задвижку, мы увеличиваем подачу, напор который создает насос уменьшается, а напор за задвижкой увеличивается. Этот способ крайне неэкономичный, так как большое количество энергии теряется на сопротивлении запорной арматуры.

Основы применения частотных преобразователей в насосных установках

Регулирование задвижкой

  • регулирование изменением частоты вращения насосов – при таком регулировании при снижении частоты вращения, кривая напорно-расходной характеристики насоса перемещается вниз. Подача, напор насоса и напор в трубопроводе одновременно уменьшаются. При увеличении частоты вращения насоса, увеличивается подача и напор насоса, и напор в сети.

Основы применения частотных преобразователей в насосных установках

Частотное регулирование

Данный способ регулирования является более экономичным, но требует применения частотных преобразователей.

При регулировании с помощью частотных преобразователей снижение энергопотребления равно потерям, которые обусловлены повышением напоров при работе насосов с постоянной частотой вращения.

Особенности работы насосов при изменении частоты вращения

При регулировании насоса изменением частоты вращения обеспечивается перемещение рабочей точки насоса по кривой характеристики трубопровода, а не насоса, как в случае с дросселированием. При этом избыточные напоры отсутствуют и обеспечивается минимальное энергопотребление.

Регулирование частоты вращения насосов в насосной установке дает возможность оптимально распределить нагрузки между насосами, выровнять их КПД и удерживать в зоне оптимальных КПД их рабочие точки, снизив затраты энергии к минимальным значениям.

При изменении частоты вращения насоса пропорционально изменяются и все его характеристики. Но при низкой частоте вращения порядка 10-15% от номинальной происходит нарушение зависимости между подачей и напором насоса. Его характеристики теперь нельзя представить в виде параболической кривой, а только россыпью точек. Потому диапазон регулирования частоты вращения насоса не должен выходить за предельную нижнюю границу.

Так же при работе насосов с пониженной частотой вращения могут возникнуть такие опасные явления как кавитация и помпаж.

Кавитация – это явление при котором поток жидкости перестает быть сплошным, сопровождающееся образованием пузырьков газов и паров жидкостей. Кавитация опасна дополнительными потерями электроэнергии и разрушением рабочих элементов насоса. Она может возникнуть в случае если существующий напор на всасывающем трубопроводе меньше требуемого. При снижении частоты вращения насоса, также в большую сторону увеличивается требуемое значение напора на всасывающем трубопроводе, что следует учитывать во избежание возникновения кавитации.

Помпаж – может возникнуть в насосах с неустойчивыми (лабильными) напорно-расходными характеристиками при пересечении лабильной характеристики насоса с характеристикой трубопровода в двух точках. В этом случае насос начинает попеременно работать с параметрами двух точек и вся система становится неустойчивой. Происходят гидравлические удары, резкое закрытие обратных клапанов, частое изменение потребляемой мощности и нестационарные режимы работы сети электроснабжения. Работа в таком режиме недопустима !

При оснащении насосных установок частотно-регулируемым приводом следует не забывать о том, что:

Регулирование частоты вращения, пуск и торможение электродвигателей переменного тока

Регулирование частоты вращения, пуск и торможение электродвигателей переменного тока

У коллекторных электродвигателей переменного тока частоту вращения регулируют способом, указанным для электродвигателя постоянного тока с последовательным возбуждением.

Регулирование частоты вращения изменением частоты тока является наиболее экономичным, но для питания электродвигателя требуется отдельный генератор или преобразователь с регулируемыми частотой и напряжением. При этом способе необходимо стремиться, чтобы характеристики асинхронного электродвигателя обладали достаточной жесткостью, которую обеспечивают совместным регулированием частоты тока и напряжения.

При пропорциональном понижении частоты тока и напряжения жесткость механической характеристики 1 (рис. 1) и максимальный момент Мmах уменьшаются незначительно по сравнению с естественной характеристикой 0. К преимуществам частотного регулирования следует отнести широкий диапазон (до 12:1) и плавность.

Регулирование частоты вращения изменением числа пар полюсов применяют только для асинхронных электродвигателей с короткозамкнутым ротором, так как у двигателей с фазным ротором потребовалось бы одновременное переключение обмотки ротора, усложняющее его схему и конструкцию.

Число пар полюсов можно изменить переключением числа секций одной обмотки или переключением двух независимых обмоток. В первом случае обмотка статора состоит из двух равных частей, включаемых последовательно или параллельно. Такое переключение позволяет изменить число пар полюсов в 2 раза и, следовательно, менять частоту вращения электродвигателя в отношении 2:1. Применение двух обмоток с различным числом пар полюсов позволяет менять частоту вращения в различных соотношениях, например, 1:3; 2:3 и т.д.

Механические характеристики асинхронного электродвигателя при различной частоте тока

Двигатели, способные работать при двух различных числах пар полюсов, называют двухскоростными. Их конструируют для работы с постоянным моментом или постоянной мощностью.

Кроме двухскоростных двигателей, применяют трех- и четырехскоростные. Промышленность выпускает двухскоростные двигатели с одной обмоткой в статоре, трех- и четырехскоростные — с двумя обмотками, которые в свою очередь могут переключаться в отношении 2:1. Этот способ регулирования экономичен (двигатели имеют достаточно жесткие характеристики), но требует сложного переключающего устройства; кроме того, у двигателей с двумя обмотками резко снижается использование активной меди, так как при работе одной из обмоток вторая выключена. Однако благодаря своим преимуществам двигатели с переключением числа пар полюсов широко применяются в судовых электроприводах, не требующих плавного регулирования частоты вращения (шпилей, брашпилей и др.).

Регулирование изменением параметров цепей электродвигателя распространено у двигателей с фазным ротором. При введении в цепь ротора активного сопротивления частота вращения двигателя уменьшается при том же значении вращающего момента (см. рис. 2, характеристика 1). Этот способ неэкономичен, требует дорогого и громоздкого реостата, причем уменьшение частоты вращения составляет 10—20 %, поэтому в судовых условиях он применяется сравнительно редко и в основном на короткие промежутки времени.

Пуск синхронных двигателей. Различают прямой пуск и пуск с ограничением пускового тока.

Прямой пуск прост, но при включении возникают большие пусковые токи, достигающие значений Iп = (4-7) Iном.

При питании электродвигателя от электростанции ограниченной мощности пусковые токи могут вызвать недопустимые кратковременные снижения напряжения, нарушающие работу включенных приемников электрической энергии. Поэтому прямой пуск применяется в том случае, если мощность электродвигателя во много раз меньше мощности электростанции, от которой он питается.

При мощности электродвигателя соизмеримой с мощностью электростанции применяют различные способы пуска с ограничением пускового тока: переключением обмотки статора двигателя со «звезды» на «треугольник»; при помощи автотрансформатора; включением резисторов в цепь статора; включением реакторов в цепь статора; включением резисторов в цепь ротора (для двигателей с фазным ротором).

При пуске переключением обмоток статора со «звезды» на «треугольник» сначала замыкается выключатель Q1, при этом обмотки статора двигателя оказываются включенными «звездой» (рис. 2, а). После разгона двигателя выключатель Q1 размыкается, а выключатель Q2 замыкается, и обмотки включаются на «треугольник». При этом способе пусковой ток уменьшается в 3 раза.

Читайте также  Ремонт двигателя поддона микроволновки своими...

Пуск двигателя переключением со «звезды» на «треугольник»

Преимуществом способа является его простота, недостатком — уменьшение пускового момента также в 3 раза (рис. 2, б). Уменьшение момента объясняется тем, что при соединении обмоток «звездой» напряжение на них в √3 раза меньше, чем при соединении «треугольником», а как видно из формулы (1), момент зависит от напряжения во, второй степени. В некоторых случаях пусковой момент при соединении обмоток «звездой» оказывается недостаточным, тогда применение способа становится невозможным.

Преимуществом пуска двигателя с помощью автотрансформатора по сравнению с предыдущим способом является возможность установить любое первоначальное напряжение (рис. 3, а) и затем плавно увеличивать его. Недостатком этого способа являются высокая стоимость, большие масса и габаритные размеры пускового автотрансформатора. Характеристики приведены на рис. 3, б.

Включение на время пуска в цепь статора резисторов (рис. 4,а) или реакторов приводит к большим активным потерям в случае резисторов и уменьшению коэффициента мощности в случае реакторов, однако вследствие простоты этих способов они находят достаточно широкое применение. Как видно из формул (2) и (3), включение элементов в цепь статора увеличивает критическую частоту вращения Мmах1 и уменьшает момент Mmах (характеристика 1, рис. 4, б).

Пуск двигателей с фазным ротором осуществляется с помощью пусковых реостатов, включенных в цепь ротора (рис. 5, а).

Пусковой реостат состоит из трех-четырех секций резисторов на каждую фазу. По мере разгона двигателя секции реостата поочередно закорачивают. Сопротивления пускового реостата рассчитывают графоаналитическим методом с использованием пусковой диаграммы. В начале пуска в цепь ротора включают реостат с полным сопротивлением, при котором пусковой момент должен быть Мп = (0,7 — 0,8)Мmах.

Механические характеристики асинхронного двигателя на рабочем участке от М = 0 до М = 0,8 Мmах можно приближенно считать прямолинейными, тогда на пусковой диаграмме (рис. 5, б) искусственная характеристика, соответствующая началу пуска, будет иметь вид прямой 4, проходящей через точки nх и г.

Пуск двигателя с помощью автотрансформатора (3). Пуск двигателя с резисторами в цепи статора (4). Пуск двигателя с фазным ротором (5)

Под действием вращающего момента двигатель начнет вращаться с увеличивающейся частотой вращения, а вращающий момент, как видно из характеристики, будет уменьшаться. Этот процесс будет продолжаться до тех пор, пока вращающий момент не станет равным моменту сопротивления Мс, причем частота вращения будет меньше номинальной, соответствующей естественной характеристике.

Для увеличения частоты вращения необходимо выключить секцию пускового реостата R3 (см. рис. 5), замкнув выключатель Q3. Обычно это делают в точке г’ (см. рис. 5, б) при вращающем моменте двигателя M1 = (1,1-1,2) Mном. Оставшееся сопротивление пускового реостата должно быть таким, чтобы момент двигателя на искусственной характеристике 3 не превышал значения пускового момента Mп, т.е. характеристика 3 должна пройти через точку «в» (считается, что за время замыкания выключателя Q3 частота вращения двигателя n3 не изменяется). Аналогично замыкают выключатели Q2 и Q1, двигатель переходит на работу в соответствии с характеристиками 2 и 1, пока не будет полностью шунтирован реостат.

Если для естественной характеристики 1

Отношение критических скольжений для искусственной характеристики 2 и естественной характеристики 1

т. е. отношение критических скольжений для искусственной характеристики 2 и естественной характеристики 1 равно отношению приведенного активного сопротивления фазы ротора, включая сопротивление секции пускового реостата, к приведенному активному сопротивлению ротора.

Далее, из известной в электротехнике формулы:

s/sкp=const

На пусковой диаграмме (см. рис. 5) скольжению s1 соответствует отрезок «оа», а скольжению s2 — отрезок «об». Обозначим длину первого отрезка lоа, второго lоа + lоб, тогда:

Сопротивления

Активное сопротивление обмотки ротора двигателя


Электрическое торможение. Способы электрического торможения двигателей переменного тока аналогичны способам торможения двигателей постоянного тока.

Режим торможения с отдачей энергии в сеть наступает при частоте вращения ротора, превышающей частоту вращения магнитного поля. Такой режим возможен при разгоне двигателя под действием падающего груза или при переключении много-скоростного электродвигателя на меньшую скорость.

При разгоне двигателя под действием падающего груза по естественной характеристике 0 (рис. 6) частота вращения увеличивается и при М = 0 достигает частоты вращения магнитного поля nх. При дальнейшем разгоне двигателя частота вращения становится больше nх, э.д.с. больше напряжения сети и машина работает в режиме генератора, отдавая в сеть активную энергию. Этому режиму соответствует участок характеристики в квадранте II.

Динамическое торможение асинхронного двигателя производится отключением обмотки статора от трехфазной питающей сети и включением ее на питание от источника постоянного тока (рис. 7), при этом в двигателе вместо вращающегося магнитного поля возникает неподвижное (nх = 0). В результате взаимодействия вращающегося ротора с неподвижным магнитным полем возникает тормозной момент (см. рис. 6, характеристика 1). Тормозной момент можно регулировать изменением напряжения постоянного тока или изменением сопротивления резистора R (см. рис. 7).

Механические характеристики асинхронной машины при различных режимах работы (6). Схема динамического торможения асинхронного электродвигателя (7)

Для двигателей с фазным ротором, кроме того, регулирование тормозного момента возможно изменением сопротивления резисторов, включенных в цепь ротора.

Торможение противовключением может быть получено при реверсировании двигателя на ходу путем переключения двух фаз обмотки статора, при этом магнитное поле начинает вращаться в обратную сторону и тормозит двигатель. На рис. 6 этому режиму соответствует участок характеристики 2, находящийся в квадранте II. Когда частота вращения двигателя уменьшится до нуля, его необходимо отключить, в противном случае он начнет вращаться в обратную сторону (участок характеристики 2 в квадранте III).

Сравнение способов торможения

Сравнивая различные способы торможения двигателей переменного тока, можно сделать вывод, что наиболее экономичным является торможение с отдачей энергии в сеть, но при нем нельзя затормозить двигатель до частоты вращения меньшей, чем частота вращения магнитного поля.

Динамическое торможение позволяет тормозить электродвигатель до частоты вращения, близкой к нулю, но требует дополнительного источника постоянного тока.

Торможение противовключением наименее эффективно, так как при больших тормозных токах тормозной момент на валу двигателя с короткозамкнутым ротором незначителен.

Поэтому данный способ торможения применяется только для двигателей с фазным ротором, у которых за счет введения в цепь ротора резисторов с большим сопротивлением можно увеличить тормозной момент при одновременном уменьшении тока (см. рис. 6, характеристика 3).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector