Какой основной недостаток асинхронного двигателя

Какой основной недостаток асинхронного двигателя

Асинхронный двигатель, его плюсы и минусы

asava

Асинхронный двигатель — электрическая машина переменного тока, отличается максимальным пусковым моментом, небольшими показателями пускового тока. Название асинхронного аппарата происходит от слова «неодновременный». Прибор обеспечивает частоту вращения ротора ниже частоты вращения магнитного поля. От классических модификаций с короткозамкнутыми роторами, агрегат отличается простотой конструкции и дешевизной изготовления.

Обзор конструкции

Три основные составляющие двигателя – ротор, статор и корпус. Кожух обеспечивает защитные функции, предупреждает повреждения на статоре и роторе. Также позволяет закрепить подвижную, стационарную часть асинхронной машины.

Статор размещен неподвижно в двигателе, содержит станину и магнитопровод. Под воздействием пресса магнитный проводник фиксируется к станине и формирует электромагнитное ядро. Магнитное поле, создаваемое в ядре, беспрерывно вращается. Тонкие листы магнитопровода выполнены из электротехнической листовой стали, крепление пластин способствует образованию пазов и зубцов статора. Шихтованный сердечник, выступающий дополнительным элементом статора, также создан из статорных пластин. Листы сердечника соединяются сваркой, прессом и кольцевыми шпонками – аналогично образован магнитопровод.

Обмотка ротора представлена короткозамкнутыми кольцами, внешне напоминающими колеса беличьих клеток. Включает латунные или медные стержни, приваренные к короткозамкнутым кольцам на торцах. Кольца вбиты в пазы. Статор и ротор разделен воздушной прослойкой.

Обмотка двигателей с фазным ротором в начале изолирована, концы припаяны к контактным кольцам, позволяющим подключить пуско-регулирующий реостат. Цепь ротора получает дополнительное сопротивление, дает возможность регулировать частоту вращения и уменьшения пусковых токов.

Строение асинхронного двигателя

Ключевые преимущества

Преимущества эксплуатации асинхронных электродвигателей (АД) состоят в следующем:

  • Возможность прямого подключения к питающей сети без пускорегулирующих приборов при коэффициенте загрузки ≈1.
  • Самостоятельный запуск группы асинхронных двигателей одной или нескольких питающих секций при кратковременном обесточивании и последующем возобновлении питания под воздействием станционной автоматики.
  • Простота обслуживания и эксплуатации, доступная цена, высокая надежность, определяющая широкое применение в промышленности с целью привода механизмов, устойчивых к перепадам электроэнергии, пусковых показателей, скольжения.
  • Безотказная работа на участках, размещенных на высоте над уровнем моря 1 км, при диапазоне температур – 40°С и +40 °С, влажности воздуха при +25°С не более 98%, запыленности — 10 мг/м3.
  • Способность принимать различные механические перегрузки без существенных изменений КПД или нарушения стабильности работы.
  • Полная автоматизация работы.
  • Отсутствие необходимости проводить сложное и дорогостоящее обслуживание.
  • Асинхронным двигателем проводят комплектацию редукторов (червячных и цилиндрических). Механизм способствует уменьшению угловых скоростей вала и повышению крутящих моментов.
  • Широкий выбор конструкций. В зависимости от типа обмотки, различают асинхронные электродвигатели с короткозамкнутым и фазным ротором (с контактными кольцами).

По количеству используемых фаз устройства разделяют на одно-, двух-, трехфазные варианты.

Трехфазная обмотка обеспечивает лучшие пусковые характеристики и стабильную работу. Двухфазные электродвигатели оснащены двумя перпендикулярными обмотками статора, используемыми в однофазных сетях — одну обмотку соединяют напрямую с фазой, вторую питают фазосдвигающим конденсатором. Однофазный электродвигатель работает от пусковой катушки индуктивности, подключенной кратковременно через конденсатор к сети или замкнутой накоротко. Маломощные приборы выступают оптимальным вариантом для питания бытовых приборов.

Трехфазный асинхронный двигатель

Трехфазный асинхронный двигатель

Отрицательные характеристики асинхронного двигателя

АД обладает перечисленными ниже недостатками:

  • Чувствительностью к перепадам напряжения.
  • Высокими пусковыми токами при низких коэффициентах скольжений.
  • Необходимостью использования преобразователей частоты, пусковых реостатов для улучшения характеристик электромотора.
  • Небольшими показателями синхронной частоты вращения — не превышает 3000 об/мин. Для увеличения скорости потребуется редуктор или турбопривод.
  • Сложной регулировкой производительности механизмов, вращающихся под воздействием асинхронного электродвигателя.

Асинхронные электродвигатели располагают приличной механической характеристикой. Несмотря на недостатки, они лидируют по показателям применения. Мощность двигателей серии АИР варьирует в пределах 0,06 и 400 кВт, высота оси вращения – 50-355 мм. Ток при максимальном напряжении — 0,55…5 А. КПД электродвигателя 66-83 %, что также является хорошим показателям для устройства с низкими эксплуатационными затратами.

Вид асинхронного двигателя

Рекомендации по выбору устройства

Решив купить асинхронный электродвигатель, важно правильно определить обороты на выходе, мощность, посадочные параметры по лапам или габариты фланца, диаметр вала. Дополнительного внимания заслуживают стандарты моторов.

Большинство потребителей отдает предпочтение европейским стандартам, благодаря разнообразному выбору. Также многие пользователи принципиально ищут импортные двигатели для использования в узкоспециальной среде: для постоянного тока, тельферов, приводов станков с ЧПУ. Однако отечественные электромоторы купить гораздо проще, в случае поломки не потребуется долгий поиск для замены деталей.

Устройство асинхронного двигателя: достоинства и недостатки, принцип работы

Наиболее популярным из существующих электродвигателей до сих пор является асинхронный двигатель, созданный ещё в XIX веке. Его конструкция оказалась гениально простой и настолько удачной, что все дальнейшие преобразования не касались принципа действия, затрагивая лишь технологию изготовления тех или иных деталей. Например, модифицироваться могли подшипники, на которых крепился вал двигателя, менялась форма обмоток ротора и статора, однако принцип работы асинхронного двигателя оставался прежним.

Как устроен асинхронный двигатель

Независимо от того, какие размеры имеет электрический мотор такого типа, его устройство будет одинаковым. Проще для примера рассмотреть трёхфазный электродвигатель. Такие моторы работают в заводских цехах – на конвейере и в станках, приводят в движение кабину лифта – в домах и на шахтах, перекачивают воду, крутя турбину насоса – и в небольшой скважине, и на мощных водозаборных станциях. Сфера применения трёхфазных устройств широка.

Разные типы двигателя

В отличие от трёхфазного, однофазный асинхронный двигатель часто применяется в бытовой технике – пылесосах, стиральных машинах, вентиляторах, кухонных комбайнах, блендерах и т.д. Они же применяются в магнитофонах и проигрывателях виниловых дисков. Даже в составе персонального компьютера можно найти не один асинхронный двигатель. Но к устройству этой версии двигателя мы вернёмся чуть позже.

Первым появился на свет именно трёхфазный электродвигатель, принцип работы которого строился на взаимодействии электромагнитных полей. Основные части асинхронного двигателя – это статор и ротор. Соответственно, статором была названа часть, которая остаётся неподвижной. Именно она находится непосредственно под внешней оболочкой устройства и имеет форму цилиндра. В этой части по кругу расположены три обмотки – под углом 120° друг к другу.

В современных двигателях можно насчитать множество обмоток, однако, они соединены друг с другом так, чтобы каждая последующая отличалась от предыдущей по фазе, и фазовый сдвиг между соседними обмотками составлял 120°. Обмотки наматываются медным проводом, и к каждой из групп подключается напряжение со своей фазы. Таким образом, получается, что магнитное поле движется по этим обмоткам, как бы замыкаясь в кольцо.

Статор тоже имеет свои обмотки. Так как на статор электричество не подаётся, он имеет право на замкнутый проводник, который иногда вместо обмоток формируют в виде так называемой беличьей клетки. Если сравнивать точнее, то эта деталь напоминает не саму клетку для проворного грызуна, а беличье колесо, предназначенное для того, чтобы животное выплёскивало свою неуёмную энергию. В роторе устройства «беличья клетка» формируется путём заливки расплавленного алюминия в пазы сердечника, выполненного из набранных стальных листов. Такое устройство называется короткозамкнутым ротором.

Если статор выполнен с реальными обмотками, то он обычно делается многополюсным. Такой ротор называют фазным. Обмотки этого ротора замыкают звездой или треугольником.

Ротор имеет собственный вал, который опирается на задний и передний подшипники. Они, в свою очередь, закреплены на корпусе двигателя так, что ротор внутри статора может свободно вращаться. Принцип действия асинхронных двигателей основан на том, что в обмотках или «беличьем колесе» статором наводится магнитное поле. Под его действием в проводниках ротора появляется ток, а с ним – собственное магнитное поле.

Переменное магнитное поле статора увлекает за собой ротор, и тот начинает вращаться. Но магнитное поле ротора всегда запаздывает относительно поля статора, и вращение обоих полей не может происходить синхронно. Это заставляет ротор преодолевать множество действующих на него сил:

  • силу тяготения;
  • трение качения (если используется шариковый или роликовый подшипник);
  • трение скольжения (если в качестве подшипника применяется бронзовая втулка);
  • силу противодействия приводимого в движение оборудования.

Последняя сила зависит от многих моментов, поэтому её невозможно свести к какому-либо простейшему физическому параметру. Если надо сдвинуть с места трамвай, то двигателю приходится на себя брать нагрузку от редуктора, который надо раскрутить, от самого вагона, который надо сдвинуть, к тому же не надо забывать ещё и о силе трения качения, которое испытывают колёса транспортного средства.

В случае когда идет описание работы профессиональной мясорубки, которую приводит в действие асинхронный двигатель, то здесь преодолевается сопротивление и самого редуктора, и того куска мяса или даже кости, которую надо перемолоть.

Поскольку между статором и ротором есть зазор, то ротор под нагрузкой просто отстаёт от статора по угловой скорости. Следовательно, частота вращения ротора зависит от нагрузки на вал двигателя. Нарушается принцип синхронности, оттуда и название самого устройства: «асинхронный двигатель».

Преимущества асинхронных двигателей

Заложенный в асинхронный двигатель принцип работы даёт ряд преимуществ этому устройству:

  1. Простое устройство делает таковой экономичным в производстве.
  2. Низкое потребление энергии приводит к экономичности устройств, оснащённых таким двигателем.
  3. Универсальность применения в аппаратах, где не требуется точное поддержание частоты вращения или существует схема управления с обратной связью, обеспечивающая вращение с заданной частотой.
  4. Высокая надёжность в работе.
  5. Асинхронный двигатель может работать при однофазном подключении.

Недостатки асинхронных двигателей

Есть у электродвигателей такой конструкции и свои недостатки. К ним можно отнести потери на тепло. Они, действительно, могут перегреваться, особенно – под нагрузкой. Для этого их корпуса нередко делают ребристыми – чтобы они лучше излучали тепло в окружающее пространство. Также асинхронный прибор часто снабжается сидящим на том же валу вентилятором для обдува ротора, потому что корпус может отводить тепло только от статора, так как воздушного зазора между ними нет, чего не скажешь о роторе.

Невозможность стабильно держать частоту вращения делает асинхронный двигатель неприменимым в некоторых устройствах.

Однофазное подключение электродвигателя

В наших домашних приборах чаще всего можно встретить всё тот же асинхронный прибор. Но как же он «понимает», в какую сторону ему начать вращение при его запуске, если на него заводятся только одна фаза и ноль? В такой асинхронный двигатель принцип действия заложен такой же, как и у трёхфазного – вращение магнитного поля. Для этого у каждого двигателя есть ещё один контакт – пусковой.

Статор имеет две обмотки, между которыми выдерживается угол 90°. Обе группы катушек подключены к одной и той же фазе, однако, чтобы обеспечить сдвиг на те же самые 90° между обмотками, одна из них подключается через конденсатор. Это заставляет магнитное поле вращаться.

Подобные двигатели используются, например, в кофемолках или соковыжималках. Можно слышать, как изменяется звук асинхронного двигателя в этих приборах, когда они работают под нагрузкой. На холостом ходу частота вращения ротора у них явно выше.

Подводя итог важно сказать, что асинхронные электродвигатели обрели большую популярность. Конечно, нельзя не забывать о некоторых недостатках. Однако все они перекрываются благодаря великому множеству достоинств.

Асинхронный электродвигатель — преимущества и недостатки

Основными потребителями мировой электроэнергии (более 60% — 65%) являются электромеханические системы — электроприводы, работающие в различных промышленных, транспортных и бытовых механизмах и агрегатах. Асинхронный двигатель является наиболее широко применяемым среди всех типов электродвигателей. Двигатели специальной конструкции, построенные на базе асинхронного двигателя, характеризуются техническими параметрами, влияющими на их рабочие характеристики и адаптирующими их к различным требованиям и назначениям. Среди асинхронных двигателей специальной конструкции можно выделить следующие: многоскоростные двигатели — частота вращения двигателя изменяется изменением количества пар полюсов вращающегося магнитного поля; двигатели с короткозамкнутым ротором с повышенным пусковым моментом — используются для привода устройств с большим моментом инерции; моторы крановые — адаптированы к различным видам работ, используются для привода кранов и других подъемных устройств; двигатели с тормозом — используются в приводах, требующих быстрой остановки после рабочего цикла или после аварийного отключения питания; двигатели с повышенным скольжением — используются для привода механизмов с большой инерционностью, а также механизмов, работающих в повторно-кратковременном режиме; взрывозащищенные двигатели и т.д.

В бытовых электроприборах применяются однофазные электродвигатели с рабочим напряжением 220 вольт. Очень часто таким двигателем является однофазный асинхронный двигатель с короткозамкнутым ротором.

Преимущества асинхронных электродвигателей

  • Самым главным преимуществом асинхронного двигателя является то, что его конструкция довольно проста. По сравнению с электродвигателем постоянного тока, асинхронный электродвигатель не имеет щеток и поэтому требует минимального технического обслуживания. Не требуется замена щеток, и нет угольной пыли от этих самых щеток, которая быстро засоряет электродвигатель. По этой же причине стоимость двигателя довольно низкая.
  • Подключение. Благодаря тому, что в стандартной трехфазной системе питания фазы сдвинуты на 120°, для формирования вращающегося поля не требуются дополнительные элементы и преобразования. Вращение поля внутри статора и, как следствие, вращение ротора обусловлены самой конструкцией асинхронного двигателя. Необходимо обеспечить подачу напряжения через коммутационный аппарат (контактор или пускатель), и двигатель будет функционировать.
  • Работа двигателя не сильно зависит от состояния окружающей среды. Но и для экстремальных условий выпускается большое количество специализированных модификаций асинхронных электродвигателей.
  • В двигателе нет искр из-за отсутствия щеток.
  • Асинхронный двигатель — это высокоэффективная машина с КПД при полной нагрузке от 85 до 97 процентов.

Недостатки асинхронных двигателей

  • Регулировать скорость асинхронного двигателя очень сложно. Это связано с тем, что трехфазный асинхронный двигатель является двигателем с постоянной скоростью и для всего диапазона нагрузок изменение скорости двигателя очень мало. Существуют различные типы устройств, позволяющих регулировать скорость мотора, которые не только расширяют диапазон применения двигателя, но и экономят электроэнергию. Типичными примерами экономии энергии за счет замены нерегулируемых приводов на регулируемые являются такие механизмы, как: насосы — 25%, вентиляторы — 30%, компрессоры — 40% и центрифуги — 50%.
  • Во время прямого пуска, который заключается в подаче на двигатель номинального напряжения номинальной частоты, возникают неблагоприятные условия, такие как высокое потребление тока и низкий пусковой момент.
  • Высокая инерция ротора — двигатель может не справиться с началом вращения тяжелых приводных агрегатов.

На данный момент существует множество механических и электронных устройств, повышающих эффективность электромоторов и позволяющих максимально нивелировать недостатки асинхронных электродвигателей.

Преимущества асинхронного двигателя по сравнению с двигателем постоянного тока

В отличие от трёхфазного, однофазный асинхронный двигатель часто применяется в бытовой технике – пылесосах, стиральных машинах, вентиляторах, кухонных комбайнах, блендерах и т.д. Они же применяются в магнитофонах и проигрывателях виниловых дисков. Даже в составе персонального компьютера можно найти не один асинхронный двигатель. Но к устройству этой версии двигателя мы вернёмся чуть позже.

Первым появился на свет именно трёхфазный электродвигатель, принцип работы которого строился на взаимодействии электромагнитных полей. Основные части асинхронного двигателя – это статор и ротор. Соответственно, статором была названа часть, которая остаётся неподвижной. Именно она находится непосредственно под внешней оболочкой устройства и имеет форму цилиндра. В этой части по кругу расположены три обмотки – под углом 120° друг к другу.

В современных двигателях можно насчитать множество обмоток, однако, они соединены друг с другом так, чтобы каждая последующая отличалась от предыдущей по фазе, и фазовый сдвиг между соседними обмотками составлял 120°. Обмотки наматываются медным проводом, и к каждой из групп подключается напряжение со своей фазы. Таким образом, получается, что магнитное поле движется по этим обмоткам, как бы замыкаясь в кольцо.

Статор тоже имеет свои обмотки. Так как на статор электричество не подаётся, он имеет право на замкнутый проводник, который иногда вместо обмоток формируют в виде так называемой беличьей клетки. Если сравнивать точнее, то эта деталь напоминает не саму клетку для проворного грызуна, а беличье колесо, предназначенное для того, чтобы животное выплёскивало свою неуёмную энергию. В роторе устройства «беличья клетка» формируется путём заливки расплавленного алюминия в пазы сердечника, выполненного из набранных стальных листов. Такое устройство называется короткозамкнутым ротором.

Если статор выполнен с реальными обмотками, то он обычно делается многополюсным. Такой ротор называют фазным. Обмотки этого ротора замыкают звездой или треугольником.

Ротор имеет собственный вал, который опирается на задний и передний подшипники. Они, в свою очередь, закреплены на корпусе двигателя так, что ротор внутри статора может свободно вращаться. Принцип действия асинхронных двигателей основан на том, что в обмотках или «беличьем колесе» статором наводится магнитное поле. Под его действием в проводниках ротора появляется ток, а с ним – собственное магнитное поле.

Переменное магнитное поле статора увлекает за собой ротор, и тот начинает вращаться. Но магнитное поле ротора всегда запаздывает относительно поля статора, и вращение обоих полей не может происходить синхронно. Это заставляет ротор преодолевать множество действующих на него сил:

  • силу тяготения;
  • трение качения (если используется шариковый или роликовый подшипник);
  • трение скольжения (если в качестве подшипника применяется бронзовая втулка);
  • силу противодействия приводимого в движение оборудования.

Последняя сила зависит от многих моментов, поэтому её невозможно свести к какому-либо простейшему физическому параметру. Если надо сдвинуть с места трамвай, то двигателю приходится на себя брать нагрузку от редуктора, который надо раскрутить, от самого вагона, который надо сдвинуть, к тому же не надо забывать ещё и о силе трения качения, которое испытывают колёса транспортного средства.

В случае когда идет описание работы профессиональной мясорубки, которую приводит в действие асинхронный двигатель, то здесь преодолевается сопротивление и самого редуктора, и того куска мяса или даже кости, которую надо перемолоть.

Поскольку между статором и ротором есть зазор, то ротор под нагрузкой просто отстаёт от статора по угловой скорости. Следовательно, частота вращения ротора зависит от нагрузки на вал двигателя. Нарушается принцип синхронности, оттуда и название самого устройства: «асинхронный двигатель».

Сравнение синхронного и асинхронного двигателей

В завершение можно подвести итог, в чем главные отличия асинхронных (АД) и синхронных (СД) моторов.

Выделим базовые моменты:

  1. Ротору асинхронных моторов не требуется питание по току, а индукция на полюсах зависит от статорного магнитного поля.
  2. Обороты АД под нагрузкой отстают на 1-8% от скорости вращения поля статора. В СД количество оборотов одинаково.
  3. В «синхроннике» предусмотрена обмотка возбуждения.
  4. Конструктивно ротор СД представляет собой магнит: постоянный, электрический. У АД магнитное поле в роторном механизме наводится с помощью индукции.
  5. У синхронной машины нет пускового момента, поэтому для достижения синхронизации нужен асинхронный пуск.
  6. «Синхронники» применяются в случаях, когда необходимо обеспечить непрерывность производственного процесса и нет необходимости частого перезапуска. АД нужны там, где требуется большой пусковой момент и имеют место частые остановки.
  7. СД нуждается в дополнительном источнике тока.
  8. «Асинхронники» медленнее изнашиваются, ведь в их конструкции нет контактных колец со щетками.
  9. Для АД, как правило, характерно не круглое количество оборотов, а для СД — округленное.

Преимущества асинхронных двигателей

Заложенный в асинхронный двигатель принцип работы даёт ряд преимуществ этому устройству:

  1. Простое устройство делает таковой экономичным в производстве.
  2. Низкое потребление энергии приводит к экономичности устройств, оснащённых таким двигателем.
  3. Универсальность применения в аппаратах, где не требуется точное поддержание частоты вращения или существует схема управления с обратной связью, обеспечивающая вращение с заданной частотой.
  4. Высокая надёжность в работе.
  5. Асинхронный двигатель может работать при однофазном подключении.

Асинхронный электродвигатель — преимущества и недостатки

Основными потребителями мировой электроэнергии (более 60% — 65%) являются электромеханические системы — электроприводы, работающие в различных промышленных, транспортных и бытовых механизмах и агрегатах. Асинхронный двигатель является наиболее широко применяемым среди всех типов электродвигателей. Двигатели специальной конструкции, построенные на базе асинхронного двигателя, характеризуются техническими параметрами, влияющими на их рабочие характеристики и адаптирующими их к различным требованиям и назначениям. Среди асинхронных двигателей специальной конструкции можно выделить следующие: многоскоростные двигатели — частота вращения двигателя изменяется изменением количества пар полюсов вращающегося магнитного поля; двигатели с короткозамкнутым ротором с повышенным пусковым моментом — используются для привода устройств с большим моментом инерции; моторы крановые — адаптированы к различным видам работ, используются для привода кранов и других подъемных устройств; двигатели с тормозом — используются в приводах, требующих быстрой остановки после рабочего цикла или после аварийного отключения питания; двигатели с повышенным скольжением — используются для привода механизмов с большой инерционностью, а также механизмов, работающих в повторно-кратковременном режиме; взрывозащищенные двигатели и т.д.

Недостатки асинхронных двигателей

Есть у электродвигателей такой конструкции и свои недостатки. К ним можно отнести потери на тепло. Они, действительно, могут перегреваться, особенно – под нагрузкой. Для этого их корпуса нередко делают ребристыми – чтобы они лучше излучали тепло в окружающее пространство. Также асинхронный прибор часто снабжается сидящим на том же валу вентилятором для обдува ротора, потому что корпус может отводить тепло только от статора, так как воздушного зазора между ними нет, чего не скажешь о роторе.

Читайте также  Схема подключения однофазного асинхронного двигателя ...

Невозможность стабильно держать частоту вращения делает асинхронный двигатель неприменимым в некоторых устройствах.

Общее описание

У асинхронной машины по сравнению с машиной постоянного тока полюса не явно выражены, т. е. это неявнополюсная магнитная система. Чтобы уменьшить вихревые токи, статорный сердечник набран из изолированных штампованных стальных листов 0,35-0,5 мм в толщину, закрепленных в стальном остове. Пазы статора заполнены обмоткой из медного провода. Обмотки статорных фаз могут соединяться в «звезду» или «треугольник», для этого их входы и выходы располагаются на специальном изолированном от корпуса щитке. Это создает массу удобств, поскольку есть возможность подводить к обмоткам статора напряжение разной величины. Ротор в асинхронной машине, как и охватываемая деталь, состоит из электротехнических стальных листов, а в пазы заложена обмотка. В функции от исполнения ротора асинхронных моторов машины бывают короткозамкнутыми и фазными. Не изолированная обмотка из меди короткозамкнутого ротора в виде стержней укладывается в его пазах. Торцы стержней соединяют медные кольца. Обмотка такого типа названа «беличьей клеткой». Иногда вместо нее пользуются отлитым узлом вращения. Из асинхронных машин с фазным ротором (наличие контактных колец) состоят мощные приводы. Также ими создается большое усилие в момент трогания с нуля. С этой целью в их обмотки включается реостат пуска. В мощных машинах между ротором и статором зазор составляет 1-1,5 мм, в моторах малой мощности он и того меньше. Вал опирается на подшипники, установленные в крышках.

Принцип работы

Движущей силой в асинхронной машине является магнитное поле вращения. Как это работает, можно рассмотреть на следующем примере. При вращении П-образного магнита, между полюсами которого расположен свободно вращающийся металлический цилиндр, поле магнита, вращаясь, будет пересекать ротор посредством своих силовых линий. Внутри ротора при этом наведутся токи Фуко и магнитное поле. Эти поля, взаимодействуя друг с другом, начнут крутить ротор. Магнит и, создаваемое им поле, будут вращаться синхронно, а обороты цилиндра отставать (асинхронность). Отсюда и пошло наименование асинхронной машины. Запаздывание вращения ротора по отношению к магнитному полю, есть скольжение. В данном примере источником циркуляции магнитного поля и ротора является приводимый во вращение постоянный магнит. Понятно, что это еще не есть электродвигатель, в котором циркулирующее магнитное поле должно создаваться электрическим током, и приводить во вращение ротор. Эту задачу удалось решить М. О. Доливо-Добровольскому, который для этого воспользовался трехфазным током. Сердечник кольцевого вида из железа (статор) имеет полюса, расположенные по кругу через 120о, на которые намотаны 3 обмотки сети 3-х фазного тока. В сердечнике расположен цилиндр из металла – прообраз ротора электромотора. Соединив обмотки в «звезду» или «треугольник», и подав на них 3-х фазный ток, общему магнитному полю, созданному полюсами, придается вращение. За один цикл изменения тока, протекающего в обмотках, магнитный поток также совершит поворот на 360о и инициирует вращение цилиндра, а это и есть асинхронная машина.Если вторую обмотку заменить третьей, то произойдет реверс магнитного поля. То же самое будет, если заменить ток второй фазы на третью. Это значит, реверс магнитного потока возможен, если переключить 2 любые фазы. Таково устройство асинхронной машины, статор которой имеет 3 обмотки. В ней обороты 2-х полюсного магнитного поля совпадают с количеством циклов изменения тока за равное время.Если статор содержит по кругу 6 обмоток, то инициируется 4-х полюсное магнитное поле, если девять – 6-ти полюсное вращающееся поле. В случае частоты 3-х фазного тока 50 Герц, обороты поля будут при: — 2-х полюсном статоре – 50 об/сек; — 4-х полюсном – 25 об/сек; — 6-ти полюсном – 17 об/сек. Ротор машины будет немного отставать по отношению к магнитному потоку. В случае холостого хода изделия несовпадение составит 3%, под нагрузкой – 6%.

Читайте 7 самых мощных тракторов России

Сферы применения

Без асинхронных машин с короткозамкнутым ротором не может обойтись ни промышленность, ни транспорт, ни быт и др. Они используются практически везде. Это и электроприводы дымососов, подъемных кранов, шаровых мельниц, насосов, лебедок, дробилок, станков, бытовой техники. При необходимости ступенчатого изменения скорости (в тех же лифтах) пользуются многоскоростными асинхронными двигателями. Где требуется быстро остановиться и зафиксировать вал, когда исчезает напряжение, не обойтись без асинхронных двигателей с электромагнитным стопором (станки, лебедки). Асинхронные двигатели с большой величиной скольжения хорошо справляются с повторно-кратковременными режимами и при пульсации нагрузки.Широкое применение находится и линейным асинхронным двигателям из-за простого производства и хорошей надежности. Однофазными машинами оборудуются небольшие устройства (бытовые вентиляторы, мини-помпы и др.). Наиболее эффективны 2-х фазные асинхронные машины, когда их питание идет от однофазной сети переменного тока. Другое их название – конденсаторные двигатели, поскольку без фазосдвигающего конденсатора они не могут работать.Трехфазные электромашины устанавливаются на станочное оборудование, тали, пилорамы, строительные краны и др. У 3-х фазных асинхронных машин с фазным ротором цена выше, чем у машин с короткозамкнутым ротором, но их пусковые нагрузочные моменты намного больше. Поэтому эти двигатели составляют привода на лифтах и подъемных кранах, т. е. там, где требуется запуск в условиях нагрузки.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector