Как вычислить момент на валу двигателя

Как вычислить момент на валу двигателя

Что такое крутящий момент двигателя и как его рассчитать?

Среди всех важных параметров двигателя авто наиболее показательным является мощность. Автолюбители часто оперируют «лошадиными силами» и забывают про еще один важный параметр, характеризующий машину – крутящий момент двигателя. Хотя данный показатель считается менее значимым, он определяет, насколько резким будет старт и дальнейшее ускорение авто.

Понятие крутящего момента двигателя

КМ можно представить как показатель силы вращения коленвала. Перед тем, как в нем разобраться, начнем с мощности и количества оборотов, а также разберем, почему все эти параметры взаимосвязаны. Первая характеристика подразумевает работу, которая производится за временную единицу. Под работой подразумевается преобразование энергии сгорания топлива в кинетическую. Вторая характеристика говорит о количестве оборотов вала в минуту. Ну, а крутящий момент можно назвать производной от этих характеристик величиной.

Крутящий момент

Учитывая принятую систему измерения силы в ньютонах (Н), а длины в метрах (м), крутящий момент измеряется в «Нм», поскольку речь о силе, прикладываемой к поршню и длине плеча коленчатого вала. Чем больше эта величина, тем выше динамика авто, соответственно, тем быстрее оно развивает заявленное количество «лошадок».

От чего зависит величина крутящего момента двигателя?

  • радиус кривошипа коленвала;
  • давление, создаваемое в цилиндре;
  • поршневая площадь;
  • объем.

По большей части, величина будет зависеть от объема ДВС: с его увеличением будет расти сила, которая воздействует на поршень. Конечно, немаловажную роль играет и радиус кривошипа, но учитывая конструктивные особенности современных двигателей, варьирование этой величины возможно только в небольших пределах. Также стоит сказать о зависимости от давления: чем оно больше, тем больше прикладываемая сила.

Формула расчета крутящего момента

Сначала посмотрим на формулу расчета мощности:

Р(мощность, кВт) = М(крутящий момент, Нм) х n (число оборотов в минуту) / 9550.

Расчет КМ выглядит следующим образом:

М(крутящий момент, Нм) = Р(мощность, кВт) x 9550 / n (число оборотов в минуту).

Дабы рассчитать нужные величины и не запутаться, достаточно воспользоваться конвертером, который доступен на многих автолюбительских сайтах.

Как измеряется крутящий момент?

Для этого достаточно взглянуть на техническую документацию своего авто. Но реальные измерения также доступны: необходимо использовать специальные датчики. Они позволят провести статические и динамические измерения.

Измерение крутящего момента

Измерение заключается в создании ситуации, где двигатель набирает максимальные обороты, затем тормозится: в процессе создается график, демонстрирующий максимальный момент мотора в момент нажатия на тормоз. Сначала показатель будет небольшим, затем будет наблюдаться рост, достижение пика и падение.

СТО должны оснащаться профессиональными тензометрами: все измерения обрабатывает специальное ПО, а результаты отображаются в виде графиков. Основная сложность в измерении КМ – достичь высокой точности показаний. Устаревшие контактные, светотехнические или индукционные тензометры не обеспечивали должной эффективности, поэтому в настоящий момент используются измерители в виде компактного передатчика, закрепляемого на вал: он передает данные на прибор-приемник, предоставляющий данные, не нуждающиеся в обработке.

Мощность или крутящий момент – что важнее?

Для решения этой дилеммы необходимо понять несколько фактов:

  • мощность имеет линейную зависимость от частоты оборотов коленвала: быстрее вращение – больше показатель;
  • мощность – производная КМ;
  • до определенного значения рост КМ зависим от числа оборотов: быстрее вращение – выше КМ. Но преодолев пиковое значение, он снижается.

Отсюда можно прийти к выводу, что крутящий момент – приоритетный параметр, характеризующий возможности мотора. В то же время, нельзя пренебрегать мощностью: это значит, что производители автомобилей должны настроить работу агрегата таким образом, чтобы соблюдался баланс этих величин.

Как можно увеличить крутящий момент двигателя?

  1. Смена коленчатого вала. К недостатка метода можно отнести тот факт, что это редкая для многих марок авто деталь: часто ее делают на заказ. Кроме того, это снизит долговечность двигателя.
  2. Расточка цилиндров. Более популярный метод, основанный на увеличении объема цилиндра. Метод доступен в большинстве автосервисных мастерских.
  3. Настройка карбюратора. Зачастую используется в дополнение к расточке.
  4. Увеличение турбонаддува. Доступно в моделях с турбированным двигателем. Тем не менее, снимая ограничения в блоке, который отвечает за управление компрессором – достаточно опасный способ, снижающий запас нагрузок в моторе. Тем, кто на него решается, также приходится прибегать к увеличению камеры сгорания, улучшению охлаждения, регулировке впускного клапана и смене распредвала, коленвала и поршней.
  5. Изменение газодинамики. Еще один метод, который по плечу только профессионалам. К тому же, убирая ограничения можно столкнуться не только с выросшей динамикой, а и с ухудшением сцепления.
  6. Использование масляного фильтра. Простой способ, снижающий засорение двигателя и продлевающий срок эксплуатации его запчастей.

Масляный фильтр

Как видно, мотор – это сложный агрегат. Он уже рассчитан с использованием сложных инженерных формул и технологий, а значит, увеличение характеристики крутящего момента нежелательно. Если желание все же есть, стоит обратить внимание на два первых пункта. Можно, конечно, попытаться устранить заводские дефекты: убрать в камерах сгорания непродуваемые зоны и убрать в стыках заостренные углы, а также, неровности на клапанах. Но придется доверить эти операции специалистам своего дела.

Отдельно стоит сказать о так называемых усилителях КМ: их принцип основан на отборе мощности уменьшением оборотов, что не лучшим способом сказывается на долговечности конструкции. Подобные решения не увеличивают КМ, а позволяют его плавно менять на постоянных оборотах.

Какому двигателю отдать предпочтение?

В настоящий момент к привычным ДВС на дизельном топливе или бензине добавились еще и электродвигатели. Во всех этих конструкциях крутящий момент двигателя может кардинально отличаться.

Бензиновый двигатель

Действие основано на впрыске и формировании воздушно-топливной смеси с последующим возгоранием от искры свечей зажигания. Процесс происходит при температуре в 500 градусов, а коэффициент сжатия находится в районе 10 единиц.

Дизельный двигатель

Здесь коэффициент сжатия достигает уже 25 единиц, а температура составляет 900 градусов. При таких условиях смесь воспламеняется без необходимости в использовании свечей.

Электродвигатель

Пожалуй, самый простой и прогрессивный вариант, который лучше вообще исключить из списка. Дело в том, что трехфазный асинхронный двигатель работает по другому принципу, кардинально отличающемуся от традиционных ДВС. Здесь пикового КМ в 600 Нм можно достичь на любой скорости. Если же говорить о «лошадях», у Теслы их количество составит 416.

Электродвигатель

Но пока электрокары не получили повсеместного распространения. И если этот вариант по каким-либо причинам недоступен, рассмотрим особенности бензиновых и дизельных агрегатов. При одинаковых объемах первый способен давать высокую скорость, второй – быстрый разгон.

В заключение

Как уже отмечалось, КМ требует внимания непосредственно при выборе авто. Зная ключевые особенности двигателей, теперь не составит труда определиться с выбором. Что до увеличения значений крутящего момента в имеющейся машине, не стоит забывать о балансе, заложенном производителем, и уж тем более нежелательно прибегать к кардинальным мерам. Увеличение динамики можно рекомендовать только в силовых агрегатах, причем КМ должен располагаться в диапазоне, где он может достигать пиковых значений. Как бы там ни было, планомерное распространение электрокаров вскоре может избавить от мук выбора. А пока, лучше быть осведомленным в технических деталях машины, как минимум, это позволит не теряться среди вопросов коллег-автолюбителей.

Приведение статических моментов сопротивления к валу электродвигателя. Определение приведенного момента инерции электропривода.

Электрическая машина

Приведение статических моментов сопротивления к валу электродвигателя

Процесс приведения будем рассматривать на примере кинематической схемы механизма подъема крана .

Кинематическая схема механизма подъема крана

Кинематическая схема механизма подъема крана.

Для того чтобы перемещать груз с массой m со скоростью vио к нему должна быть приложена механическая мощность Pио, равная произведению усилия, развиваемого при подъеме и скорости.

Во всех частях электропривода существуют потери, которые учитываются с помощью КПД. В нашей кинематической схеме суммарный КПД равен произведению КПД барабана на КПД редуктора.

В соответствии с законом сохранения энергии, необходимый момент, развиваемый двигателем должен обеспечивать необходимую мощность для перемещения груза.

Поделив обе части уравнения на ω, получим:

Mс – момент сопротивления производственного механизма, приведен к валу двигателя от сил, совершающих поступательное движение.

vио/ω = ρ – радиус приведения.

Для того чтобы привести к валу двигателя моменты, действующие при вращательном движении рабочего органа, используем:

I = ω/ωб – передаточное число.

Чтобы привести к валу двигателя статические моменты, действующие в электродвигателе, не нужно знать тип передачи и количество ступеней передачи, а достаточно знать отношение скоростей на входе в привод и на его выходе – скорость вращения барабана.

Приведенный к валу двигателя статический момент исполнительного органа производственного механизма называется моментом сопротивления и обозначается Mс.

Определение приведенного момента инерции электропривода

В отличие от определения статического момента, для приведения динамического момента необходимо знать параметры механической передачи и тип передачи. Принцип приведения основан на том, что величина суммарного запаса кинетической энергии всех движущихся частей электропривода, приведенных к валу двигателя, остается неизменной.

J1 – момент инерции всех элементов привода, вращающихся со скоростью ω.
J2 – момент инерции всех частей привода, совершающих вращательное движение со скоростью ωб.

Для приведения суммарного момента инерции к валу двигателя нужно знать моменты инерции всех вращающихся элементов электрического привода и отношение скоростей между скоростью вращения двигателя и скоростью вращения элемента привода. Если они вращаются с разными скоростями, то момент инерции нужно разделить на передаточное число в квадрате, а момент инерции от массы всех частей электропривода, совершающих поступательное движение, для приведения умножить на квадрат радиуса приведения.

cnc-club.ru

Как можно измерить крутящий момент двигателя? Статический момент измерить просто, приделываем к валу рычаг, тянем за него динамометром и запоминаем при каком усилии двигатель сдвинулся. Но что делать с крутящим моментом, да еще и при определенных оборотах?

Как построить график зависимости крутящего момента от оборотов в секунду для шагового электродвигателя? Может есть специальный прибор, которым его можно измерить (желательно для широкого диапазона двигателей)?

Use the Console, Luke.

Изображение

aftaev Зачётный участник
Зачётный участникСообщения: 33369 Зарегистрирован: 04 апр 2010, 19:22 Репутация: 6024 Откуда: Казахстан. Контактная информация:

Re: Как измерить крутящий момент двигателя?

  • Цитата

Сообщение aftaev » 19 сен 2011, 14:44

Re: Как измерить крутящий момент двигателя?

  • Цитата

Сообщение Nick » 19 сен 2011, 15:06

Как зачем для контроля качества входящей (исходящей) продукции. Кстати, а вот тот момент на графике, он отражает максимальный момент на валу или момент стабильной работы. Т.е. при такой нагрузке двигатель будет работать штатно или нет?

А не помнишь как назывался тот динамометр, без названия шибко тяжело искать?

Use the Console, Luke.

Изображение

aftaev Зачётный участник
Зачётный участникСообщения: 33369 Зарегистрирован: 04 апр 2010, 19:22 Репутация: 6024 Откуда: Казахстан. Контактная информация:

Re: Как измерить крутящий момент двигателя?

  • Цитата

Сообщение aftaev » 20 сен 2011, 17:24

Заводы могут позволить себе купить такие приборы.
При желнии можно сделать макетик который будет измерять момент удржания. Тензодатчик подключаем к компу. Включаем редуктор который тянет медленно. На омпе рисуется график в кг. Как только сорвали все.
Другой например макетик: подключается, двиг к маслянному насосу и замеряется создаваемое давление на определенных оборотах. Поддерживать всегда опредленную вязкость масл(температуру), и измерять давление цифровыми датчиками давления. Подключитьэто к компу и смотри обороты=давление(момент) Вот тебе и график.
Другое дело, хотят они этого делать, и есть у них на заводе отдел ОТК.

Порой складывается впечетление продавцы и производители ШД не проверяют даже на холостое вращение. Там же ажно 4 провда нужно прикрутить
Знакомая фирма занимается разработкой щитов управления для нефтяных качалок. Вот свои шкафы перед отправкой они тестируют. Есть них для этого 30квт двиг. со спец. приспособой которая тормозит двиг, проверяется разная защита. Самое интересное это вибро стол. Ставят щит, и трясут несколько часов. Вот если после этого он работает и ничего не отвалилось значит сборка хорошая. Это дешевле обходитя им чем потом оплачивать самолет + машину в степь к тушанчикам где стоят нефтяные качалки.

Что такое крутящий момент, и почему он важен?

В базовой физике вы, вероятно, привыкли думать о линейных силах, например, о силе тяжести, притягивающей предметы вниз, или о силе, которую вы прикладываете к тележке для покупок, толкая ее. Крутящий момент аналогичен линейным силам, но в то время как линейные силы заставляют объект двигаться по прямой линии, крутящий момент заставляет объекты вращаться.

Если вы когда-либо открывали дверь, у вас должно быть интуитивное понимание крутящего момента. Когда вы открываете дверь, вы прикладываете силу на той стороне двери, которая находится дальше всего от петель. Поскольку дверь твердая, ваша сила, действующая на расстоянии от центра вращения двери (петли), заставляет дверь вращаться и открываться. Вы можете открыть дверь, нажав на сторону двери, ближайшую к петлям, однако, как вы знаете, для открытия двери в этом случае потребуется гораздо больше усилий. Это потому, что, уменьшая расстояние между вами и центром вращения двери, вы создаете меньший крутящий момент.

Крутящий момент рассчитывается путем умножения линейной силы на расстояние, на котором эта сила действует от центра вращения. Классическим примером крутящего момента является гаечный ключ при откручивании гайки. Если у вас есть гаечный ключ длиной 20 см, и вы нажимаете на ключ с силой 2 кг, крутящий момент на гайке составит (20 см x 2 кг =) 40 кг·см.

Рисунок 1 Классический пример крутящего момента можно увидеть, когда вы используете гаечный ключ для закручивания гайки. Рисунок 1 – Классический пример крутящего момента можно увидеть, когда вы используете гаечный ключ для закручивания гайки.

Когда мы смотрим на двигатели, расчет крутящего момента аналогичен – сила, умноженная на расстояние.

Единственное отличие состоит в том, что в отличие от гаечного ключа, где сила прикладывается к рычагу, в случае с двигателем крутящий момент прикладывается непосредственно в центре вращения, создавая линейную силу на конце рычага. Размышляя о крутящем моменте двигателя, вы можете представить себе двигатель, использующий руку для поднятия веса. Максимальный вес, который может поднять двигатель, будет соответствовать максимальному крутящему моменту.

Рисунок 2 В двигателях крутящий момент прикладывается в центре вращения для создания линейной силы. Рисунок 2 – В двигателях крутящий момент прикладывается в центре вращения для создания линейной силы.

Двигатели, предназначенные для обеспечения большего крутящего момента, способны оказывать большее воздействие на другие объекты.

Почему крутящий момент важен?

Крутящий момент, в особенности при разработке систем с двигателями, которые обеспечивают правильную величину крутящего момента, невероятно важен в широком диапазоне различных применений.

Допустим, вы строите робота. Если вы хотите построить более крупного робота или робота, способного поднимать тяжелые предметы, вам понадобятся более мощные двигатели, способные создавать больший крутящий момент, чтобы заставить робота двигаться.

Для летательных аппаратов крутящий момент, создаваемый двигателями, напрямую определяет максимальную подъемную силу, которую могут создавать пропеллеры.

Рисунок 3 Создание подъемной силы крутящим моментом. Рисунок 3 – Создание подъемной силы крутящим моментом.

Если вы строите автомобиль и хотите, чтобы он ускорялся быстрее, вам потребуется от двигателей больший крутящий момент – в автомобиле сила, движущая его вперед, равна (примерно) крутящему моменту двигателя, деленному на радиус колес.

Электромобили, такие как Tesla Model S, известны своим быстрым ускорением, потому что их электродвигатели генерируют огромную величину крутящего момента. Этот крутящий момент непосредственно передается в большую силу, применяемую колесами к поверхности дороги. Как учат основы физики, воздействие на объект большей силы заставит его ускоряться быстрее.

Какие факторы влияют на крутящий момент двигателя

Когда речь идет о максимальном значении крутящего момента двигателя, существует три разных, но взаимосвязанных ограничивающих фактора.

Механические свойства материалов

Во-первых, это механические свойства материалов. Хорошим примером такого подхода к проектированию являются разные серводвигатели.

Более дешевые сервоприводы с более низким крутящим моментом используют пластиковые шестерни, обычно сделанные из нейлона. Производство пластиковых шестеренок недорогое, что делает сервоприводы с нейлоновыми шестеренками более дешевыми в производстве, и, следовательно, их можно дешевле купить. Нейлоновые шестерни также более легкие, по сравнению с металлическими, что является важным фактором для робототехники и летательных аппаратов. Однако если на эти нейлоновые шестерни будет приложен слишком большой крутящий момент, они сломаются.

Сервоприводы с более высоким крутящим моментом содержат металлические шестерни, поэтому они могут выдавать более высокий крутящий момент без поломок.

Материалы, используемые в конструкции двигателя, играют огромную роль в определении того, какой крутящий момент двигатель будет способен создать.

Рисунок 4 Двигатели изготавливаются из различных материалов, но, как правило, те, что изготовлены из металла, имеют более высокий крутящий момент, чем те, что изготовлены из нейловна или другого пластика. Рисунок 4 – Двигатели изготавливаются из различных материалов, но, как правило, те, что изготовлены из металла, имеют более высокий крутящий момент, чем те, что изготовлены из нейлона или другого пластика.

Максимальное напряжение двигателя

Вторым фактором, влияющим на максимальный крутящий момент двигателя, является максимальное напряжение, на которое рассчитан двигатель. Если вы посмотрите на страницу характеристик любого сервопривода, вы найдете разные значения крутящего момента для разных напряжений. Более высокие напряжения дают двигателю большую мощность для обеспечения более высокого крутящего момента. Тем не менее, двигатель и его схема управления могут принимать ограниченное напряжение из-за возможности перегрева и сгорания. Максимальное напряжение, которое двигатель может принять без сбоев, влияет на величину его максимального крутящего момента.

Рисунок 5 Максимальное напряжение двигателя указывается в техническом характеристиках, представленных производителями. Связь между рабочим напряжением и крутящим моментом. Рисунок 5 – Максимальное напряжение двигателя указывается в технических характеристиках, представленных производителями. Связь между рабочим напряжением и крутящим моментом.

Тепловыделение двигателя

Это подводит нас к последнему фактору, ограничивающему максимальный крутящий момент двигателя. Поскольку двигатели работают, они генерируют ненужное тепло. Чем тяжелее работает двигатель, тем больше тепла он выделяет.

Для большинства двигателей, используемых в любительских проектах, от двигателей постоянного тока до сервоприводов и шаговых двигателей, создаваемое тепло просто излучается в воздух. У них нет активного охлаждения, как, например, в электромобиле. Следовательно, двигатель ограничен тем, какой крутящий момент (а также скорость) он может генерировать без риска сбоя по температуре.

Измерьте крутящий момент двигателя сами

Мы рассмотрели, почему так важно оставаться в пределах максимального крутящего момента двигателя. Так что же делать, если вы думаете, что ваш двигатель не соответствует требованиям? Не бойтесь! У нас есть проект, который может показать вам, как измерить крутящий момент серводвигателя (в следующей статье).

Дважды проверьте крутящий момент вашего серводвигателя перед тем, как добавить его в свой проект. Это поможет вам избавиться от разочарований от сборки и от повторного переделывания.

Читайте также  Развернутая схема обмотки статора асинхронного ...
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector