Как изменяется кпд двигателя в зависимости от...

Как изменяется кпд двигателя в зависимости от…

Что такое КПД двигателя? 3 фактора, влияющих на эффективность работы двигателя

Одним из наиболее значимых параметров, которые определяют эффективность различных механизмов машины, является КПД двигателя внутреннего сгорания. Что собой представляет данное понятие, от чего зависит коэффициент полезного действия в случае с автомобильным двигателем? Какой двигатель эффективнее: дизельный или бензиновый? Можно ли увеличить КПД двигателя?

Что такое КПД двигателя? 3 фактора, влияющих на эффективность работы двигателя

Вопрос о том, насколько мощность соответствует КПД двигателя внутреннего сгорания, интересует практически каждого автолюбителя. В идеале чем выше КПД, тем эффективнее должна быть силовая система. Если же переходить от теории к практике, КПД в районе 95 % наблюдается только у электрических двигателей. Если рассматривать двигатели внутреннего сгорания вне зависимости от типа используемого топлива, то об идеальных цифрах можно только рассуждать.

Что такое КПД двигателя? 3 фактора, влияющих на эффективность работы двигателя

Разумеется, эффективность современных двигателей существенно повысилась, если сравнивать с моделями, которые были выпущены всего 10 лет назад. Выпускаемые в начале 2000 годов 1,5-литровые моторы были рассчитаны на 70 лошадиных сил, к данному параметру претензий не было. Сегодня же при аналогичном объёме речь идет о 150 лошадиных силах и более.

Производители теряют много времени, сил и ресурсов, чтобы медленно, но уверенно продвигаться в сторону увеличения КПД.

Понятие «КПД двигателя»

Изначально рассмотрим, что такое КПД и как данное понятие рассматривать в аспекте автомобильного двигателя. Коэффициент полезного действия представлен показателем, с помощью которого отображается эффективность конкретного механизма относительно превращения полученной энергии в полезную работу. Показатель отображается в процентном соотношении.

В случае с двигателем внутреннего сгорания речь идет о преобразовании тепловой энергии, которая является продуктом сгорания топлива в цилиндрах мотора. КПД в данном случае отображает фактически реализуемую механическую работу, которая напрямую зависит от того, сколько поршень получит энергии от сгорания топлива. Также на данный параметр влияет итоговая мощность, которую установка отдаёт на коленчатом вале.

От чего зависит КПД?

Ошибочно полагать, что КПД дизельного или бензинового двигателя может хоть как-то приблизиться к 100 %. На самом деле итоговый параметр во многом зависит от потерь:

  1. Потери при сгорании топлива стоит рассматривать первостепенно. Всё топливо, которое поступает в мотор, не может полностью сгорать, поэтому его часть просто улетает в выхлопную трубу. Потери в данном случае составляют около 25 %.
  2. Тепловые потери находятся на втором месте по значению. Получение тепла невозможно без энергии. Следовательно, энергия теряется при образовании тепла. Поскольку в случае с двигателем внутреннего сгорания тепло образуется с избытком, возникает необходимость в эффективной системе охлаждения. Однако тепло выделяется не только при сгорании топлива, но также во время работы самого мотора. Это происходит за счёт трения его деталей, поэтому часть энергии он теряет самостоятельно. На эту группу потерь приходится около 35 — 40 %.
  3. Последняя группа потерь имеет место в ходе обслуживания дополнительного оборудования. Расход энергии может идти на кондиционер, генератор, помпу системы охлаждения и прочие установки. Потери в данном случае составляют 10 %.

Что такое КПД двигателя? 3 фактора, влияющих на эффективность работы двигателя

Страшно представить, что у нас остаётся, поскольку в случае с бензиновыми агрегатами это в среднем 20 %, в иных не более 5 — 7 % дополнительно. Следовательно, заливая 10 литров топлива, которые уходят за 100 км пробега, всего 2,5 литра уходит на полезную работу, тогда как остальные 7 — 8 литров считаются пустыми потерями.

Коэффициент полезного действия: дизель или бензин?

Сравнивая коэффициент полезного действия бензинового и дизельного силового агрегата, о низкой эффективности первого стоит сказать сразу. КПД бензинового мотора составляет всего 25 — 30 %. Если речь идет о дизельном аналоге, показатель в данном случае составляет 40 %. О 50 % может идти речь при установленном турбокомпрессоре. КПД на уровне 55 % допустим при условии использования на дизельном ДВС современной системы топливного впрыска в сочетании с турбиной.

Несмотря на то, что силовые установки конструктивно похожи, разница в производительности существенная, на что влияет принцип образования рабочей топливно-воздушной смеси и дальнейшая реализация воспламенения заряда. Также существенным фактором является вид используемого топлива. Оборотистость бензиновых силовых агрегатов более высока, если сравнивать с дизельными вариантами, но потери намного больше, поскольку полезная энергия расходуется на тепло. Как итог, эффективность преобразования энергии бензина в механическую работу намного ниже, а большая её часть просто рассеивается в атмосфере.

Крутящий момент и мощность

Если взять как основу одинаковый показатель рабочего объёма, мощность бензинового двигателя превосходит дизельный, но для её достижения обороты должны быть более высокими. Вместе с увеличением оборотов возрастают и потери, расход топлива повышается. Сам крутящий момент также не стоит упускать из виду, поскольку это сила, передающаяся на колёса от мотора, именно она и заставляет автомобиль двигаться. Таким образом, максимальный показатель крутящего момента бензиновыми двигателями достигается на более высоких оборотах.

Дизельный двигатель с аналогичными показателями способен на низких оборотах достичь максимума крутящего момента, а для реализации полезной работы расходуется меньше солярки. Следовательно, КПД дизельного двигателя выше, а топливо расходуется более экономно.

Если сравнивать с бензином, то солярка образует тепло в большей степени при более высокой температуре сгорания топлива. Также наблюдается более высокий параметр детонационной стойкости.

Эффективность бензина и солярки

Находящиеся в составе дизельного топлива углеводороды более тяжёлые, чем бензиновые. Во многом меньший коэффициент полезного действия бензинового мотора обусловлен особенностями сгорания бензинового топлива и его энергетической составляющей. Преобразование тепла в полезную механическую энергию в дизельном двигателе происходит более полноценно, следовательно, сжигание одинакового количества топлива за единицу времени позволяет дизелю выполнить больше работы.

Не стоит также упускать из виду создание необходимых для полного сгорания смеси условий и особенности впрыска. Подача топлива в дизельных моторах происходит отдельно от воздуха, поскольку впрыскивание осуществляется непосредственно в цилиндр на завершающем этапе такта сжатия, а не во впускной коллектор. Как итог, удаётся достичь более высокой температуры, а сгорание каждой порции топлива происходит максимально полноценно.

Повышение КПД двигателя

Топливная эффективность и КПД современных двигателей находятся на своём максимальном уровне, поскольку все усовершенствования, которые только могли иметь место в автомобильной инженерии, уже произошли. Тем не менее, производители стремятся повышать коэффициент полезного действия, но результат, который они получают, никак не сопоставим с огромными ресурсами, усилиями и временем, которое тратят для достижения цели. Итогом является увеличение КПД лишь на 2 — 3 %.

Частично именно эта ситуация стала причиной появления полноценной индустрии так называемого тюнинга двигателя в любой крупной стране. Речь идёт о многочисленных полукустарных мастерских, мелких фирмах и отдельных мастерах, которые доводят традиционные моторы массовых брендов для более высоких показателей, как в плане тяги, так и мощности или КПД. Это может быть форсирование, доработка, доводка и другие ухищрения, определяемые, как тюнинг.

Например, используемый впервые в 20-х годах турбонаддув воздуха, который поступает в двигатель, применяется и сейчас. Такое устройство было запатентовано ещё в 1905 году швейцарским инженером Альфредом Бюхи. В начале Второй мировой войны наблюдалось массовое внедрение систем прямого впрыска топлива в цилиндры поршневых моторов военной авиации. Следовательно, те передовые технические ухищрения, которые мы считаем современными, известны уже более 100 лет.

Что такое КПД двигателя? 3 фактора, влияющих на эффективность работы двигателя

Выводы

В качестве итога стоит напомнить о том, что инженерам удалось шагнуть далеко вперёд от первых двигателей с КПД в районе 5 %. К тому же, изобретение идеального мотора с КПД под 100 % пока не представляется возможным, поэтому современные силовые установки находятся на пике своей эффективности. Единственный вариант для тех, кто принципиально нуждается в двигателе с 90-процентным КПД — это покупка электромобиля или машины с гибридным двигателем.

13.Зависимость кпд от полезной мощности на валу в режиме двигателя.

При увеличении полезной мощности на валу от Р2=0 КПД также увеличивается от нуля до максимального значения, которое он принимает при равенстве постоянных (магнитные и механические) потерь и переменных (электрические потери в обмотках). При дальнейшем росте нагрузки КПД начинает убывать. Зависимость снимается при U=Uн; f=fн. КПД синхронного двигателя определяется как . Р2 – полезная мощность двигателя, Р1 – подведенная мощность из сети. КПД АД с изменением нагрузки также меняет свою величину: в режиме хх КПД равен нулю, а затем с ростом нагрузки он увеличивается, достигая максимума при нагрузке (0,7-0,8)Рном. При дальнейшем возрастании нагрузки КПД незначительно снижается, а при перегрузке двигателя (Р2>Рном) он резко убывает, что объясняется интенсивным ростом переменных потерь (Рэл1+Рэл2+Рд), величина которых пропорциональна квадрату тока в обмотке статора, и уменьшением коэффициента мощности.

14.Электромагнитный момент ам. Начальный пусковой, максимальный и номинальный моменты.

Электромагнитный момент асинхронного двигателя создается взаимодействием тока в обмотке ротора с вращающимся магнитным полем. Электромагнитный момент М пропорционален электромагнитной мощности М = Рэм/w1 = 9,55Pэм/n1. Учитывая выражение для ЭМ мощности получим:

т.е. электромагнитный момент асинхронного двигателя пропорционален мощности электрических потерь в обмотке ротора.

Выражение для определения тока выглядит следующим образом:

Подставляя выражения для тока в исходную формулу получаем:

Вращающий момент АМ:

Максимальный момент АМ:

,

т.к. критическое скольжение .

Отношение полученного максимального момента к номинальному дает перегрузочную способность, которая лежит в пределах 1,7-3.

Пусковой момент АМ:

Устойчивая работа АД возможна при скольжениях меньше критического.

Зависимость момента от скольжения (механическая характеристика)

15.Уравнение моментов. Механическая характеристика ам. Статическая устойчивость работы ам в режиме двигателя.

Вращающий момент АМ:

Графически выраженная зависимость момента от скольжения М=f(s) при U1=const, f1=const и постоянных параметрах схемы замещения представляет собой механическую характеристику АМ.

Асинхронная машина при изменении скольжения от 1 до 0 работает как двигатель. В этом случае электромагнитная мощность Pэм передается магнитным полем со статора ротору и частично преобразуется в механическую мощность частично — в электрическую мощностьРэ2 = sРэм.

Исходя из полученных ранее соотношений между мощностями асинхронной машины, можно показать, что при изменении скольжения от s = l до s = ∞ машина работает как тормоз.

Можно также показать, что при отрицательных скольжениях асинхронная машина работает генератором.

Статический момент равен сумме противодействующих моментов при равномерном вращении ротора(n=const). При номинальной нагрузке двигателя установившийся режим работы двигателя определяется на механической характеристике точкой с координатами и

Анализ механической характеристики показывает, что устойчивая работа асинхронного двигателя возможна при скольжениях меньше

критического (s < sкр), т.е. на участке ОА механической характеристики. Именно на этом участке изменение нагрузки на валу двигателя сопровождается соответствующим изменением электромагнитного момента.

Работа асинхронного двигателя становится неустойчивой при

скольжениях . Если электромагнитный момент двигателя М = Mм,

а скольжение то даже незначительное увеличение нагрузочного момента приведет к уменьшению электромагнитного моментаМ. За этим последует дальнейшее увеличение скольжения до тех пор, пока оно не достигнет значения s=1, т.е. пока ротор двигателя не остановится.

коэффициент полезного действия реактивного двигателя

коэффицие́нт поле́зного де́йствия реакти́вного дви́гателя — безразмерная величина, характеризующая степень совершенства реактивного двигателя как тепловой машины и реактивного движителя. Различают полный, эффективный и полётный (тяговый) К. п. д. р. д.

Полный коэффициент полезного действия η, выражается отношением полезной тяговой мощности двигателя к затраченной в единицу времени термохимической и кинетической энергии топлива, находящегося на борту летательного аппарата. Пренебрегая нагревом топлива в баках и системах вне двигателя, получим η = PV/[Gт(Hu + V 2 /2)], где P — реактивная тяга двигателя, V — скорость полёта, Gт — расход топлива (горючего и окислителя в ракетных двигателях) во всех камерах сгорания двигателя в единицу времени, Hu — теплота сгорания 1 кг топлива (в воздушно-реактивном двигателе) или 1 кг смеси горючего и окислителя (в ракетном двигателе). Полный коэффициент полезного действия равен произведению эффективного и полётного коэффициент полезного действия (ηэ и ηп), характеризующих соответственно термогазодинамическое совершенство двигателя и его совершенство как движителя: η = ηэηп.

У воздушно-реактивного двигателя эффективный коэффициент полезного действия определяется отношением создаваемой двигателем располагаемой работы (в виде разности кинетической энергий вытекающих из сопел газов и набегающего потока воздуха) к затраченной энергии топлива. У воздушно-реактивного двигателя простейших одноконтурных схем (турбореактивный двигатель, прямоточный воздушно-реактивный двигатель) этот коэффициент полезного действия близок к термическому коэффициенту полезного действия термодинамического цикла и сохраняет характер его зависимости от основных параметров цикла. У турбореактивного двухконтурного двигателя ηэ несколько снижается из-за потерь при обмене энергий между контурами, однако полный коэффициент полезного действия турбореактивного двухконтурного двигателя на малых скоростях растёт в связи с ростом полётного коэффициента полезного действия. У двигателей с форсажными камерами сгорания при малых V значение ηэ уменьшается вследствие того, что подвод топлива в форсажные камеры осуществляется при более низком давлении воздуха однако при высоких сверхзвуковых скоростях полёта ηэ значительно увеличивается из-за существенного повышения давления в двигателе вследствие динамического сжатия воздуха.

Полётный коэффициент полезного действия определяется отношением полезной тяговой мощности двигателя к создаваемой им располагаемой мощности. Этот коэффициент полезного действия определяется приближённой формулой Б. С. Стечкина для двигателей с единым реактивным соплом: ηп = 2/(1 + ), где = V/ωc — отношение скоростей полёта и истечения газов из реактивного сопла (реально 2 с + V 2 )/2(Hu + V 2 /2). Полётный коэффициент полезного действия ракетного двигателя выражается формулой ηп = 2/(1 + 2 ).

Зависимости ηп от для воздушно-реактивного двигателя (сплошная линия) и ракетного двигателя (штриховая линия) и области их работы показаны на рис. 1.

У турбовинтовых двигателей ηэ определяется отношением эквивалентной мощности Ne к затраченной энергии топлива: ηэ = Ne/(GтHи). Полётный коэффициент полезного действия турбовинтовых двигателей выражается сложной формулой, его значение близко к значению коэффициента полезного действия винта ηв = PвV/Nв, где Pв, Nв — тяга винта и мощность на его валу.

Воздушно-реактивные двигатели к концу 80-х гг. достигли высокого термогазодинамического совершенства. Дозвуковые турбореактивные двухконтурные двигатели при высокой степени повышения давления а цикле (до 30 только в компрессорах и до 50 с учётом динамического сжатия в полёте при Маха числе полёта M = 0,8—0,85) имеют ηэ = 0,42—0,43, что превышает коэффициенты полезного действия, достигаемые в других транспортных тепловых машинах с простым рабочим циклом. Значение ηэ у современных турбореактивных двигателей с форсажной камерой и турбореактивных двухконтурных двигателей с форсажной камерой при высоких скоростях полёта (M = 2—3) равно 0,4—0,5. Такие значения эффективного коэффициента полезного действия при высоких полётных коэффициентов полезного действия обеспечивают современным воздушно-реактивным двигателям высокие значения полного коэффициента полезного действия (рис. 2), который имеет тенденцию к росту при увеличении скорости полёта летательного аппарата (при V = 0 всегда η = 0).

Литература:
Теория воздушно-реактивных двигателей, под ред. С. М. Шляхтенко, М., 1975;
Теория двухконтурных турбореактивных двигателей, под ред. С. А. Шляхтенко, В. А. Сосунова, М., 1979.

В. А. Сосунов.

Рис. 2. Полный коэффициент полезного действия.

Энциклопедия «Авиация». — М.: Большая Российская Энциклопедия . Свищёв Г. Г. . 1998 .

Как изменяется кпд двигателя в зависимости от…

Главная Судовые двигатели внутреннего сгорания Мощность и экономичность двигателя Механический коэффициент полезного действия

Механический коэффициент полезного действия, равный отношению среднего эффективного давления к среднему индикаторному, оценивает механические потери в двигателе:

Механический к. п. д. можно выразить и через мощности двигателя:

Таким образом, механический к. п. д. показывает в долях единицы или в процентах ту часть индикатор­ной мощности, которая передается на фланец коленчатого вала.

Анализ механических потерь в двигателе, выполненный нами ранее, позволяет сделать заключение, что значение механического к. п. д. двига­теля зависит: от степени быстроходности двигателя, от величины давления газов цикла и динамики его изменения, от качества изготовления и сборки деталей двигателя, от качества смазочного масла, от теплового состояния двигателя и режима загрузки его, от мощности навешенных вспомогатель­ных механизмов и от сопротивлений во впускной и выпускной системах двигателя.

При прочих равных условиях механический к. п. д. двигателя является функцией отношения среднего эффективного давления к максимальному давлению цикла; чем больше это отношение, тем выше механический к. п. д.

При уменьшении нагрузки на двигатель (сохраняя при этом число оборотов вала неизменным) мощность механических потерь N mex примерно остается постоянной, а потому относительное ее значение возрастает и ме­ханический к. п. д. падает.

На рис. 105 приведены кривые изменения механического к. п. д. ? т при полной нагрузке (сплошные кривые) и при 30 % нагрузки (пунктирные кри­вые) двигателя с воспламенением от сжатия (кривая В; ? = 16) и двигателя с воспламенением от искры (кривая А; ? = 6). Данные кривые показывают, что при уменьшении нагрузки на двигатель при неизменном числе оборотов ? т значительно падает. Следует заметить, что при холостом ходе двигателя N e == 0) из формулы (139а)

Таким образом, режим работы холостого хода можно охарактеризовать как режим, при котором механический к. п. д. равен нулю.

При одном и том же р е (как это видно из рис. 105) с увеличением числа оборотов двигателя (скоростная характеристика) ? т падает, что объясняется более интенсивным относительным ростом мощности механических потерь N мех , чем эффективной мощности двигателя.

При работе двигателя с наддувом значение ? т изменяется в зависимо­сти от системы и степени наддува. Если двигатель переводится на работу с газотурбинным наддувом, то, как показывают опытные данные, мощность механических потерь N мех при этом остается неизменной. Обозначим отно­шение ? н = p ? н / p ? , (степень наддува), где р а — давление в цилиндре в начале сжатия без наддува, а р —с наддувом. Можно принять, что отношение N in / N i также равно ? н , где N in — индикаторная мощность двигателя с наддувом, а N i — без наддува.

Если двигатель имел до наддува механический к. п. д. т. ? m , то при газо­турбинном наддуве он будет иметь:

Полученная формула показывает, что с повышением степени наддува при газотурбинном наддуве механический к. п. д. двигателя возрастает.

В том случае, когда газотурбонагнетатель кинематически связан с валом самого двигателя, отношение ? К = N к / N i может быть больше, меньше или равно отношению ? T = N T / N i в зависимости от степени использования энергии отработавших газов двигателя. Здесь N к — мощность, потребляе­мая наддувочным компрессором, а N T —мощность, развиваемая турбиной.

В этом случае, т. е. когда газотурбонагнетатель связан кинематически : валом двигателя, условный механический к. п. д. будет равен

где ? т д —механический к. п. д. собственно двигателя.

При ? T > ? К разность (? Т — ? К ) называется положительным небалансом, а при ? т к (? к — ? Т ) называется отрицательным небалансом.

Читайте также  Как снять обмотку с двигателя быстро
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector