Устройство и принцип работы современного гидротрансформатора
Первый гидротрансформатор появился большее ста лет назад. Претерпев множество модификаций и доработок, этот эффективный способ плавной передачи крутящего момента сегодня применяется во многих сферах машиностроения, и автомобильная промышленность не стала исключением. Управлять автомобилем стало намного легче и комфортнее, так как теперь нет необходимости пользоваться педалью сцепления. Устройство и принцип работы гидротрансформатора, как и все гениальное, очень просты.
История появления
Впервые принцип передачи крутящего момента посредством рециркуляции жидкости между двумя лопастными колесами без жесткой связи был запатентован немецким инженером Германом Феттингером в 1905 году. Устройства, работающие на основе данного принципа, получили название гидромуфта. В то время развитие судостроения требовало от конструкторов найти способ постепенной передачи крутящего момента от парового двигателя к огромным судовым винтам, находящимся в воде. При жесткой связи вода тормозила резкий ход лопастей при запуске, создавая чрезмерную обратную нагрузку на двигатель, валы и их соединения.
Впоследствии модернизированные гидромуфты стали использоваться на лондонских автобусах и первых дизельных локомотивах в целях обеспечить их плавное трогание с места. А еще позже гидромуфты облегчили жизнь и водителям автомобилей. Первый серийный автомобиль с гидротрансформатором, Oldsmobile Custom 8 Cruiser, сошел с конвейера завода General Motors в 1939 году.
Устройство и принцип работы
Гидротрансформатор представляет собой закрытую камеру тороидальной формы, внутри которой вплотную друг к другу соосно размещены насосное, реакторное и турбинное лопастные колеса. Внутренний объем гидротрансформатора заполнен циркулирующей по кругу, от одного колеса к другому, жидкостью для автоматических трансмиссий. Насосное колесо выполнено в корпусе гидротрансформатора и жестко соединено с коленчатым валом, т.е. вращается с оборотами двигателя. Турбинное колесо жестко связано с первичным валом автоматической коробки передач.
Между ними находится реакторное колесо, или статор. Реактор установлен на муфте свободного хода, которая позволяет ему вращаться только в одном направлении. Лопасти реактора имеют особую геометрию, благодаря которой поток жидкости, возвращаемый с турбинного колеса на насосное, изменяет свое направление, тем самым увеличивая крутящий момент на насосном колесе. Этим различаются гидротрансформатор и гидромуфта. В последней реактор отсутствует, и соответственно крутящий момент не увеличивается.
Принцип работы гидротрансформатора основан на передаче крутящего момента от двигателя к трансмиссии посредством рециркулирующего потока жидкости, без жесткой связи.
Ведущее насосное колесо, соединенное с вращающимся коленчатым валом двигателя, создает поток жидкости, который попадает на лопасти расположенного напротив турбинного колеса. Под воздействием жидкости оно приходит в движение и передает крутящий момент на первичный вал трансмиссии.
С повышением оборотов двигателя увеличивается скорость вращения насосного колеса, что приводит к нарастанию силы потока жидкости, увлекающей за собой турбинное колесо. Кроме того, жидкость, возвращаясь через лопасти реактора, получает дополнительное ускорение.
Поток жидкости трансформируется в зависимости от скорости вращения насосного колеса. В момент выравнивания скоростей турбинного и насосного колес реактор препятствует свободной циркуляции жидкости и начинает вращаться благодаря установленной муфте свободного хода. Все три колеса вращаются вместе, и система начинает работать в режиме гидромуфты, не увеличивая крутящий момент. При увеличении нагрузки на выходном валу скорость турбинного колеса замедляется относительно насосного, реактор блокируется и снова начинает трансформировать поток жидкости.
Преимущества
- Плавность движения и троганья с места.
- Снижение вибраций и нагрузок на трансмиссию от неравномерности работы двигателя.
- Возможность увеличения крутящего момента двигателя.
- Отсутствие необходимости обслуживания (замены элементов и т.д.).
Недостатки
- Низкий КПД (по причине отсутствия гидравлических потерь и жесткой связи с двигателем).
- Плохая динамика автомобиля, связанная с затратами мощности и времени на раскручивание потока жидкости.
- Высокая стоимость.
Режим блокировки
Для того, чтобы справиться с основными недостатками гидротраснформатора (низкий КПД и плохая динамика автомобиля), был разработан механизм блокировки. Принцип его работы схож с классическим сцеплением. Механизм состоит из блокировочной плиты, которая связана с турбинным колесом (а следовательно, с первичным валом КПП) через пружины демпфера крутильных колебаний. Плита на своей поверхности имеет фрикционную накладку. По команде блока управления трансмиссией, плита прижимается накладкой к внутренней поверхности корпуса гидротрансформатора при помощи давления жидкости. Крутящий момент начинает передаваться напрямую от двигателя к коробке передач без участия жидкости. Таким образом достигается снижение потерь и более высокий КПД. Блокировка может быть включена на любой передаче.
Режим проскальзывания
Блокировка гидротрансформатора может также быть неполной и работать в так называемом “режиме проскальзывания”. Блокировочная плита не полностью прижимается к рабочей поверхности, тем самым обеспечивается частичное проскальзывание фрикционной накладки. Крутящий момент предается одновременно через блокировочную плиту и циркулирующую жидкость. Благодаря применению данного режима у автомобиля значительно повышаются динамические качества, но при этом сохраняется плавность движения. Электроника обеспечивает включение муфты блокировки как можно раньше при разгоне, а выключение – максимально позже при понижении скорости.
Однако режим регулируемого проскальзывания имеет существенный недостаток, связанный с истиранием поверхностей фрикционов, которые к тому же подвергаются сильнейшим температурным воздействиям. Продукты износа попадают в масло, ухудшая его рабочие свойства. Режим проскальзывания позволяет сделать гидротрансформатор максимально эффективным, но при этом существенно сокращает срок его службы.
Вариатор с гидротрансформатором — принцип работы, основные неисправности
Конструкция автоматической трансмиссии современных моделей автомобилей нередко включает гидротрансформатор вариатора.
Этот элемент, получивший прозвище «бублика» за характерную торообразную форму, наряду с преимуществами, имеет и недостатки, не исключая выход из строя. Поэтому владельцу нужно знать первые признаки и причины неисправностей, порядок их устранения.
Как гидротрансформатор работает с вариатором — принципы работы
Назначение гидротрансформатора в вариаторе – преобразование вращающего момента, с изменением числа оборотов и передаточного числа. Этот механизм – промежуточное звено между коробкой передач и двигателем, работает в качестве гидравлического редуктора.
Результат действия данного узла – снижение оборотов, при одновременном увеличении мощности и вращающего момента до показателя 2,4.
Конструктивно гидротрансформатор включает два вариаторных шкива – насосное и турбинное колесо, между которыми расположен реактор, уступающий им в размерах. Перечисленные детали установлены в герметичном корпусе, заполненном трансформаторным маслом.
При вращении коленчатого вала, насосное колесо вариатора подает поток смазочной жидкости к турбинному. При обратном прохождении масла через реактор, напор усиливается за счет формы лопастей.
Что такое блокировка
При описанной схеме работы скорость потока жидкости постоянно возрастает, с уравниванием числа оборотов турбинного и насосного колес в гидротрансформаторе вариатора. Когда это происходит, механизм начинает работать как гидромуфта, без преобразования вращающего момента и создания препятствий для свободного тока жидкости.
В связи с нагревом масла на высоких оборотах, большая часть энергии переходит в тепловую, что делает нецелесообразным передачу момента посредством жидкой смазки. Это объясняет применение в гидротрансформаторах вариатора фрикционного сцепления, работающего за счет трения.
Данный принцип получил название блокировки. При ее срабатывании вращение передается от входного вала к выходному, что исключает потери от нагрева жидкости.
Плюсы и минусы работы
Применение гидротрансформатора вариатора системы CVT имеет определенные плюсы и минусы:
Перечисленные недостатки не отменяют достоинств, благодаря которым использование гидротрансформатора в вариаторе – выгодное конструкторское решение, применяемое на дорогих марках автомобилей.
Неисправности гидротрансформатора и его блокировки
Принцип работы гидротрансформатора вариатора предусматривает наличие фрикционных элементов. А это значит, что блокировка, особенно постепенная, приводит к износу данных деталей. В результате масло загрязняется продуктами износа.
Дополнительный фактор поступления загрязнений – клеевая основа, фиксирующая фрикционные накладки.
Как понять, что гидротрансформатор вышел из строя
Выход из строя гидротрансформатора в вариаторе можно определить по характерным признакам неисправности, описанным в таблице.
Признак | Особенности |
Появление легкого металлического скрежета в момент изменения скорости | Пропадает на высоких оборотах. Указывает на разрушение опорных подшипников. Требуется разборка узла и диагностирование состояния деталей |
Незначительная вибрация на средней скорости – от 60 до 90 км/ч, возрастающая по мере усугубления проблемы | Связано с загрязнением фильтрующих элементов продуктами износа. Необходима смена масла и фильтров |
Нарушение динамики разгона | Проблемы с обгонной муфтой, нуждающейся в замене |
Остановка машины | Разрушен шлицевой паз турбинного колеса. Требуется установка нового шлица или полная замена узла |
Появление шуршащего звука на холостом ходу двигателя | Износ подшипника между турбинным и насосным колесами |
Громкий металлический стук при наборе скорости | Деформация и выпадение лопаток |
Отложение мелкой пудры на масляном щупе | Повышение содержания загрязнений. Необходимо заменить масло |
При холостой работе двигателя возникает запах жженой пластмассы | Перегрев гидротрансформатора по причине недостатка смазки из-за неправильной работы системы охлаждения АКПП или других неисправностей. Нужна полная диагностика авто |
Остановка двигателя при переключении скорости | Необходима перепрошивка блока управления двигателем |
Для точного определения причин неисправности требуется детальный осмотр вариатора машины специалистами автосервиса.
В этом помогут специалисты из «Центра по ремонту вариаторов №1». Получить дополнительную информацию можно по телефонам: Москва – 8 (495) 161-49-01, Санкт-Петербург — 8 (812) 223-49-01. Принимаем звонки из всех регионов страны.
Муфта блокировки
Муфта блокировки обеспечивает сцепление за счет контакта фрикционных элементов. Трение вызывает износ деталей, с проникновением загрязнений в трансмиссионное масло. Это может стать причиной повреждения подшипников и других узлов, падения давления в системе.
Ранняя блокировка
Основная причина ранней блокировки – изменение состава смазочной жидкости за счет увеличения концентрации продуктов износа. Это нарушает циркуляцию масла в системе, провоцирует выход из строя подшипников, разрушение прокладок и уплотнителей.
«Бублик», убийца АКПП: что ломается в гидротрансформаторах и как их чинят
Гидротрансформатор, он же «бублик» (прозвище пошло от его формы), является непременным атрибутом любого «настоящего автомата». Не обходятся без него и мощные вариаторы, и даже в преселективную АКПП его поставили на некоторых моделях Honda (например на Acura TLX), чтобы обеспечить мягкость движения на малой скорости. И иногда он выходит из строя.
Казалось бы, это чисто гидравлический узел и ломаться там нечему, разве что протечь может… Но нет, современный гидротрансформатор много сложнее в устройстве, чем картинка в старом учебнике и скорее является узлом с ограниченным сроком службы, после чего должен пройти процедуру восстановления. Что же с ним происходит, что у него внутри и как это починить?
Как устроен «бублик»?
Основной задачей гидротрансформатора всегда было преобразование крутящего момента и оборотов: он работает как гидравлический редуктор, который умеет снижать обороты и повышать крутящий момент с коэффициентом трансформации до 2.4. Основана его работа на передаче энергии через поток жидкости — в данном случае трансмиссионного масла, которое мы все знаем как ATF (automatic transmission fluid).
Коленчатый вал мотора связан с насосным колесом, которое разгоняет жидкость и отправляет ее на турбинное колесо. Турбинное колесо в свою очередь связано с коробкой передач. Жидкость раскручивает турбинное колесо и отправляется обратно на насосное. Но перед этим она попадает на лопатки направляющего аппарата, выполненного в виде колеса-реактора, которые ускоряют поток жидкости и направляют его в сторону вращения.
Таким образом поток жидкости ускоряется до тех пор, пока скорости вращения насосного и турбинного колес не выравниваются, и тогда гидротрансформатор переходит в режим гидромуфты, при котором преобразования крутящего момента не происходит, а направляющий аппарат начинает свободно вращаться, не мешая току жидкости.
Чем больше разница скоростей вращения турбинного и насосного колес, тем больше ускоряется ток жидкости, но при этом она начинается нагреваться, а КПД гидротрансформатора падает — больше энергии уходит в нагрев. Когда же скорости вращения колес выравниваются, то в передаче момента через жидкость с большими потерями смысла нет.
Поэтому со временем в гидротрансформаторы стали внедрять элементы обычного фрикционного сцепления, основанного на трении. Называется это блокировкой гидротрансформатора. Суть блокировки — в соединении входного и выходного валов, чтобы передавать момент напрямую. Без нее старые машины с АКПП, как говорится, «не ехали».
На самых старых конструкциях блокировка срабатывала автоматически, за счет давления рабочей жидкости, но с появлением АКПП с электронным управлением функция стала управляться отдельным клапаном. Говорить же о способах реализации блокировки нужно в отдельной статье, потому что их великое множество. Но смысл один — соединять валы и временно исключать из цепочки передачи крутящего момента трансмиссионное масло.
А вскоре на фрикционы блокировки возложили задачи, сходные с задачами обычного сцепления механической КПП — при разгоне они немного смыкались, пробуксовывая и помогая передавать крутящий момент, а сама блокировка стала срабатывать очень рано, чтобы уменьшить потери в гидротрансформаторе. Собственно, современные гидромеханические «автоматы» уже нельзя назвать классическими — это уже некий гибрид.
И чем мощнее становились двигатели, тем сильнее нагревалась жидкость в ГТД, тем сложнее было обеспечить его охлаждение, и тем больше работы по передаче крутящего момента старались переложить на сцепление блокировки.
Что ломается в гидротрансформаторе?
Раз есть сцепление внутри «бублика», значит, оно изнашивается — вечных фрикционных пар не бывает. К тому же продукты их износа загрязняют внутренности ГТД, поток горячей жидкости с абразивом «выедает» металл лопаток и других внутренних частей. Также потихоньку стареют, выходят из строя от перегрева или просто разрушаются уплотнения-сальники, а иногда выходят из строя подшипники или даже ломаются лопасти турбинных колес.
Продукты износа фрикционной накладки попадают и в саму АКПП, ведь охлаждение ГТД идет прокачкой масла через насос коробки и общий теплообменник. А в гидроблоке АКПП (о нем нужно рассказывать отдельно) есть еще много разных мест, где грязь может что-то забить или жидкость может проточить лишние отверстия, повредить соленоидные клапаны, замкнуть проводники…
В общем, со временем ГТД становится основным источником «грязи» в АКПП, которая обязательно выведет ее из строя. У некоторых АКПП проблема осложняется тем, что материал накладок «приклеен» к основе, и по мере износа в жидкость начинают попадать клеющие вещества, ускоряя процессы загрязнения в разы.
Таким образом, поживший «бублик» нужно менять или ремонтировать, пока он не сломал всю коробку передач. К слову, старые АКПП, у которых блокировка срабатывала редко, только на высших передачах или ее не имелось вовсе, имеют заметно большие интервал замены масла и ресурс.
Наиболее печальный случай
К чему это приводит, можно увидеть на примере широко распространенной 5-ступенчатой АКПП Mercedes 722.6. Она ставилась на несколько десятков моделей Mercedes-Benz, Jaguar, Chrysler, Dodge, Jeep и SsangYong c 1996 года и ставится по сей день.
В этой коробке передач гидротрансформатор блокируется на всех передачах, и специальный клапан регулирует его прижатие. Даже при плавном разгоне включается частичная блокировка, а при резком блокировка включается почти сразу. Машина получается экономичной и динамичной.
Гидротрансформатор: его устройство и работа
Появившись очень давно, гидротрансформатор претерпевал множественные изменения и доработки. Сегодня данное устройство считается наиболее эффективным способом передачи крутящего момента, поэтому и применяется он в большинстве сфер машиностроения. Благодаря гидротрансформатору управлять транспортным средством стало гораздо легче и комфортнее. Отпала необходимость пользоваться педалью сцепления и это при том, что его устройство и принцип работы очень просты.
Устройство и принцип работы гидротрансформатора
Данный механизм представляет собой закрытую камеру тороидальной формы. Внутри устройства размещены соосно друг к другу насосное, турбинное и реакторное колеса. Заполнен гидротрансформатор заполнен циркулирующей жидкостью. В корпусе устройства насосное колесо жестко соединено с коленчатым валом. То есть оно вращается вместе с оборотами мотора. Турбинное колесо связано в свою очередь с первичным валом автоматической коробки передач. А между ними уже располагается реактороное колесо. На муфте свободного хода установлен реактор. Она позволяет реактору вращаться в одном направлении. Благодаря особой форме лопастей реактора, поток жидкости может изменять свое направление. За счет чего и увеличивается крутящий момент на насосном колесе. В этом и заключается принциальное отличие между гидротрансформатором и гидромуфтой. В последней из-за отсутствия реактора крутящий момент не увеличивается.
Работа устройства основана на передаче крутящего момента от мотора к трансмиссии. Происходит это за счет рециркулирующего потока жидкости без жесткой связи. Ведущее насосное колесо создает поток жидкости. Он после попадает на лопасти турбинного колеса. Жидкость воздействует на него в результате чего оно приводится в движение и начинает передавать крутящий момент на первичный вал. Как только происходит повышение оборотов, происходит увеличение скорости вращения насосного колеса. Это приводит к нарастанию силы потока жидкости, которая и увлекает за собой турбинное колесо. Поток жидкости трансформируется в зависимости от скорости вращения насосного колеса. В момент выравнивания скоростей турбинного и насосного колес реактор препятствует свободной циркуляции жидкости и начинает вращаться благодаря установленной муфте свободного хода. Все три колеса вращаются вместе, и система начинает работать в режиме гидромуфты, не увеличивая крутящий момент. При увеличении нагрузки на выходном валу скорость турбинного колеса замедляется относительно насосного, реактор блокируется и снова начинает трансформировать поток жидкости.
Преимущества и недостатки гидротрансформатора
К преимуществам такого устройства можно отнести то, что оно обеспечивает плавность движения и старта транспорта с места. За счет гидротрансформатора снижаются вибрации и нагрузки на трансмиссию. Он позволяет увеличить крутящий момент двигателя и при этом не требует к себе обслуживания. К минусам устройства можно отнести то, что оно имеет низкий КПД, плохую динамику и высокую стоимость.
Подробнее о гидротрансформаторе будет рассказано в этом видеоматериале: