Электронный указатель оборотов двигателя

Электронный указатель оборотов двигателя

Тахометр на Attiny.Продолжаем знакомство с AVR.

Для тех, кто не знает, тахометр-прибор для измерения частоты вращения.В этой статье я расскажу, как сделать такой прибор на микроконтроллере AVR Attiny2313.Попутно мы разберем такие функции МК, как таймер/счетчик, прерывания по таймеру/счетчику, внешние прерывания и работа с LCD дисплеем и переменными.
Для начала оговорим принцип работы и необходимые для изготовления детали.Прежде всего, нужен собственно датчик, который будет считать обороты.Его я взял из старого принтера.Там он использовался для определения наличия бумаги.
Датчик работает так: внутри него находится оптопара, состоящая из инфракрасного светодиода и фоторезистора.Когда объект(желательно белого цвета для лучшего отражения) находится над оптопарой свет, излучаемый светодиодом, отражается от него и попадает на фототранзистор.Это то же самое, что и обычный транзистор, только база управляется не подаваемым на нее током, а светом.Следовательно транзистор открывается, передавая логическую единицу на МК.
Схема оптрона
Так выглядит датчик, который использовал я:
Датчик
Транзистор нужно подключать к питанию с резистором 4,7кОм, можно взять другой номинал, но 4,7кОм оптимальный вариант по току:
Схема подключения оптрона
Для того чтобы, мы могли считать информацию понадобится дисплей.У меня под руками был однострочный 16-символьный алфавитно-цифровой экземпляр.Для регулировки контрастности дисплея желательно прикрутить переменный резистор.Даташит моего дисплея(ROHM 2034R) гласит, что нужен резистор от 10 до 20 кОм, но традицию использовать не то, что надо, а то что есть никто не отменял, поэтому я откопал резистор от 0 до 33 кОм.Если не найдете нужный переменный резистор или просто не захотите его ставить, можно сделать простой делитель напряжения из двух резисторов.Контрастность у дисплея при этом регулироваться не будет, конечно.
Дисплей+резистор

На этом скромный список деталек заканчивается, приступаем к составлению схемы.
Дисплей подключается к микроконтроллеру так, как показано на схеме(в данном случае для порта В).
Схема подключения дисплея
Аналогично для порта С:
LCD
Переменный резистор, как уже было сказано используется для регулировки контрастности, подключается к 3му выводу дисплея(обозначен, как LCD HEADER V0).
Схема вышла, в общем, несложная.В архиве выложу ее полностью в формате spl(SPLAN).

Теперь время заняться прошивкой.
Любой проект с дисплеем начинается с того, что мы прописываем микроконтроллеру порт, на котором висит дисплей.Причем, это делается с тэгом #asm(тэг для ассемблерной команды).
Адрес конкретного порта ищем в библиотеке МК, которая валяется в папке с компилятором:
PORTB

Подключаем 2 необходимые библиотеки:

После подключения библиотек объявляем переменные.int-целые числа от -32768 до 32767.Для числа оборотов в секунду этого хватит.

Порт D настраиваем на ввод и ставим единицы по умолчанию на все его биты.

Инициализируем дисплей.В скобках пишем число символов в строке.

Дальше надо настроить таймер.Он примечателен тем, что тикает даже во время выполнения программы.В этом его главное отличие от обычной задержки(команды delay).Эта задержка полностью остановит МК, но в данном случае это недопустимо, так как прибор должен считать обороты без остановок.Тут и приходит на помощь таймер/счетчик.
Смысл программы такой: по внешнему прерыванию(от датчика) запускается цикл, в котором прибавляется единица к переменной rps.Таймер в это время продолжает тикать.Как только он доходит до 1 секунды, стартует другое прерывание по таймеру/счетчику.В нем переменная rps выводится на дисплей и обнуляется.Таким образом, частота обновления показаний 1 секунда.

В Attiny2313 есть 2 таймера 8 и 16 разрядный.Мы воспользуемся 8-разрядным.Он обозначается, как таймер/счетчик 0. 8 разрядов таймера означает, что в нем 2 в 8 степени позиций = 256.
Настройка таймера начинается с регистра управления TCCR0:
Регистр TCCR0
Расчеты таймера основаны на тактовой частоте, а в этом регистре мы выбираем предделитель тактовой частоты, с которой будет тикать таймер.Это очень сильно облегчает расчеты.К примеру, если МК работает с частотой 8 мегагерц, поделив ее на 1024, мы получаем сравнительно небольшое число, работать с которым намного легче.
Программируем биты в соответствии с таблицей:
Выбор предделителя

На этом этапе нужно определиться с начальным значением таймера.Оно следует из того, сколько раз должен переполниться таймер для достижения определенного времени в соответствии с тактовой частотой с предделителем.
Расчеты:
8000000/1024=7812,5 (делим тактовую частоту МК на выбранный предделитель)
7812,5/256=30,52 (считаем число переполнений)
Значит потребуется примерно 30 переполнений всего таймера(с 0) для достижения 1 секунды.
Ставим таймер в 0.

В регистр TIFR-флаг переполнения таймера.Когда таймер переполнен автоматически устанавливается 1.
Этот регистр нужно сбросить в 0:

TIMSK — регистр прерываний по таймеру.
Регистр TIMSK
Разрешаем прерывания по таймеру/счетчику 0.

Также нам понадобятся и прерывания по внешнему сигналу(в данном случае с датчика).
Они управляются регистром GIMSK.INT1(PD3)-выход микроконтроллера, к которому будем цеплять датчик.
Регистр GIMSK
Разрешаем прерывания по внешнему сигналу с порта INT1:

Регистр МCUCR управляет видом внешних прерываний.Для тахометра подойдет прерывание по спадающему фронту.Только в этом случае он будет показывать реальное число оборотов.
Регистр MCUCR
Программируем регистр в соответствии с таблицей:
Таблица управления прерываниями

Ассемблерной командой разрешаем все прерывания:

Чтобы программа никогда не завершалась добавляем бесконечный цикл:

Помимо главной программы в проекте присутствуют еще 2 подпрограммы прерываний-по таймеру и по внешнему сигналу.
По таймеру:
Обозначаем начало подпрограммы прерываний:

Нужно снова обнулить таймер, чтобы он начал отсчитывать новую секунду.

Мы посчитали, что для отсчета одной секунды надо, чтобы таймер переполнился 30 раз.
Поэтому, как только счетчик прерываний(отдельная переменная pr, объявленная вначале)станет равен 30, число оборотов в секунду выводится на дисплей, а обе переменные обнуляются.

С выводом переменной на экран пришлось повозиться отдельно.Как выяснилось, выводить напрямую переменную нельзя, нужно либо сделать из нее строку, либо преобразовать ее в последовательность номеров из таблицы символов(есть в даташите на любой дисплей):
Таблица символов LCD
Первый способ можно устроить с помощью функции sprintf, но она ест слишком много памяти, поэтому на тиньках корректно не работает.
Воспользуемся вторым способом.Будем выводить переменную посимвольно с помощью команды lcd_putchar(‘код символа в таблице ‘).Переходим от цифры к коду символа путем деления переменной с остатком на числа кратные 10 и прибавлением числа 48(для совпадения с табличным значением).В этой программе прописан вывод четырех символов, но можно изменить ее для любого другого числа.Недостаток метода-вместо чисел превышающих 9999 будут выводится левые знаки, но вряд ли что-то сможет крутиться с частотой 10 килогерц, да и датчик от принтера потянет максимум 1 килогерц, если верить даташиту.

Если таймер переполнился но, счетчик еще не достиг 30, просто прибавляем к нему 1 и ждем следующего переполнения.

Вот и вся программа.Шьем МК и испытываем девайс в действии.
В таком оформлении выглядит не очень красиво, но работает.Можно будет сделать что-нибудь покрасивее, как сделаю, обязательно выложу фотки.
Окончательное оформление. Добавлены 2 конденсатора на питание, кнопка и светодиод(для экспериментов), а также разъем под программатор Громова.
Окончательное оформление
Старое оформление тахометра
Наконец, видео.В качестве демонстрационного полигона пришлось соорудить из подручных средств «вентилятор»:

Еще испытал это изобретение на шуруповерте.Результат порадовал.Показал 4 оборота в секунду, производителем заявлено 250 об/мин.Из целых вариантов показаний 4 самый точный, который прибор мог вывести, т.к. 4*60=240, а 5*60 это уже 300 :).
В архиве: проект CVAVR под 8 мегагерц с исходниками, прошивка, схема(SPLAN), фьюзы для Attiny2313(8 мегагерц от встроенного тактового генератора).
Во втором архиве, на всякий случай, даташиты на дисплей и датчик.Мало ли что, может пригодятся…

Тахометры (26)

Тахометр (измеритель числа оборотов) – это устройство, разработанное для проведения бесконтактных или контактных измерений частоты вращения (скорости оборотов) разнообразных подвижных объектов, таких как: валы машин и механизмов, роторы, диски и любые другие вращающиеся детали в процессе своей работы.

99999 об/мин
Диапазон измерение скорости вращения (контактно): 0,5

19999 об/мин
Диапазон измерение скорости движения поверхности (контактно): 0,05

99999 об/мин
Точность измерений: ± 0,05 %

99999 об/мин
Точность измерений: ± 0,05 %

99999 об/мин
Точность измерений: ± 0,05 %

19999 об/мин
Диапазон измерение скорости движения поверхности (контактно): 0,05

40000 об/мин
Точность измерений: ± 0,05 %

Электронный тахометр: обороты двигателя — под контролем

Одной из главных диагностических функций тахометра является контроль над скоростью вращения любого подвижного механизма промышленного оборудования и всевозможных устройств. Наиболее часто данного вида приборы используют для определения скорости вращения коленчатого вала в двигателе внутреннего сгорания автомобиля. Также многие модели цифровых тахометров работают как измерители линейной скорости движения поверхности, что позволяет определить показатели скорости движения конвейера или ленточных деталей. Контролируя текущее состояние движения механизма, оператор может управлять технологическим процессом и следить за соблюдением технических условий эксплуатации оборудования.

Виды цифровых тахометров

Цифровой тахометр вычисляет число оборотов детали в единицу времени при помощи процессора и отображает показания на дисплее. Такие устройства отличаются высокой точностью и удобством в работе. В зависимости от принципа функционирования выделяют следующие разновидности промышленных тахометров:

  • Бесконтактные (оптические) – не требующие непосредственного контакта с объектом измерения, осуществляющие замеры дистанционно при помощи лазера или фотоэлектрического приемника (фототахометры). Такие приборы предоставляют возможность фиксировать вращение с частотой до 100000 оборотов в минуту.
  • Контактные (механические) – определяют не только частоту вращения, а также скорость движения поверхности с помощью специальной насадки и требуют полноценный доступ к агрегату, для которого требуется произвести замер. Механический метод обычно применяется для контролирования и измерения относительно небольших скоростей.
  • Комбинированные – предназначены для измерения угловой и линейной скоростей и обладают свойствами контактных и бесконтактных моделей.
  • Стробоскопические (стробоскоп-тахометр) – функционируют по принципу визуальной статичности вращающегося объекта и позволяют измерять частоту вращения и колебания небольших объектов до 50000 оборотов в минуту.

Современные приборы выполнены в прочном и удобном корпусе, обладают широким набором дополнительных функций, например возможностью сохранения полученных данных в памяти тахометра и отображения их на дисплее в процессе измерений.

В вопросе выбора, какой электронный тахометр купить, необходимо определить для решения какой задачи будет использоваться прибор, и сопоставить измерительные возможности устройства с частотой вращения проверяемых Вами объектов. В ассортименте нашего интернет-магазина представлены как самые простые, так и передовые модели измерителей частоты оборотов по выгодным ценам. Высококвалифицированные специалисты нашего магазина предоставят Вам подробную техническую консультацию и помогут подобрать оборудование исходя из Ваших потребностей.

Мы предоставляем гарантию на срок 12 месяцев и осуществляем оперативную бережную доставку в любые города России от 3000 рублей бесплатно!

Приборы для измерения частоты вращения

Приборы для измерения частоты вращения

В зависимости от места установки тахометра и способа применения тахометры подразделяют на стационарные, дистанционные и ручные. По принципу действия, различают механические (центробежные), магнитные, магнитно-индукционные, электрические и электронные тахометры.

Механические тахометры

Принцип действия механических тахометров основан на использовании центробежных сил, пропорциональных квадрату угловой скорости, действующих на центробежные расходящиеся грузы (наклонное кольцо), находящиеся на валу и вращающиеся вместе с ним вокруг оси, (рис. 1, а). Чувствительным элементом является кольцо 1 на оси 2, проходящей через приводной валик 3. Кольцо нагружено спиральной пружиной 4 и связано тягой 5 с подвижной муфтой 6. При вращении валика кольцо стремится занять положение, перпендикулярное к оси вращения. Муфта через промежуточное кольцо 9 и зубчатую рейку 7 входит в зацепление с шестерней 10, на оси которой закреплена стрелка 8, движущаяся вдоль шкалы прибора (градуирована в об/мин.). Тахометр закреплен неподвижно, а вал 3 приводится во вращение через передачу от вала двигателя.

При установившемся режиме центробежная сила, действующая на вращающееся кольцо 1, уравновешивается силой действия спиральной пружины, и стрелка тахометра неподвижна. При изменении частоты вращения вала равновесие сил нарушается, вызывая разворот кольца относительно оси 2 на угол α и соответствующий разворот стрелки 8 прибора. Механические центробежные измерительные приборы обладают нелинейной статической характеристикой, поэтому их шкала неравномерная.

Периодический контроль частоты вращения и проверку стационарных тахометров производят механическим центробежным ручным тахометром (рис. 1, б), прижимая наконечник 1 к торцу вращающегося вала. В корпус 2 встроен редуктор с переключающим устройством, позволяющий менять передаточное отношение от наконечника 1 к чувствительному элементу для измерения в пяти диапазонах частоты вращения от 25 до 10000 об/мин. Переключают редуктор и устанавливают указатель 3 путем перемещения вдоль оси наконечника приводного вала при нажатой кнопке 4. В зависимости от установленного диапазона частоты вращения показания прибора определяют по одной из двух шкал.

К преимуществам механических тахометров относится высокая точность показаний, а к недостаткам — невозможность дистанционного отсчета.

Магнитоиндукционные тахометры

Магнитоиндукционный тахометр имеет равномерную шкалу. В тахометре (рис. 2.) вращение от приводного вала 1 через конические шестерни и вал 2 передается ротору с постоянными магнитами 3, между которыми на оси 10 находится алюминиевый диск 4.

Под действием вращающегося поля магнитов в диске индуцируется электрический ток, создающий свое магнитное поле. Сила взаимодействия магнитных полей уравновешивается силой действия волосковой пружины 5, один конец которой закреплен на оси 10, а другой — в корпусе прибора.

Пропорционально частоте вращения приводного вала 1 изменяются действующие силы, разворот диска 4, оси 10 и жестко связанной с ней стрелки 7 вдоль шкалы 8.

В прибор вмонтирован магнитоиндукционный успокоитель, состоящий из алюминиевого диска 9, закрепленного на валу 10, и неподвижной системы с постоянными магнитами 6. При движении в диске 9 индуцируется ток и создается магнитное поле, взаимодействующее с полем постоянных магнитов. А так как сила взаимодействия этих полей направлена в сторону, противоположную движению диска, то происходит торможение колебаний стрелки прибора.

Дистанционные магнитоиндукционные тахометры

Дистанционное измерение частоты вращения основано на принципе электрической дистанционной передачи вращения вала двигателя валу магнитно-индукционного измерительного узла измерителя и преобразования частоты вращения вала в угловые перемещения стрелки измерителя.

Тахометр работает следующим образом (рис. 3): в обмотке статора 11 датчика при вращении ротора 15 возбуждается трехфазовый ток с частотой, пропорциональной частоте вращения вала двигателя. Ток по трем проводам приводится к обмотке статора 12 синхронного серводвигателя.

Частота вращения магнитного поля статора измерителя пропорциональна частоте токов в обмотках фазы. Ротор двигателя измерителя вращается с частотой, синхронной вращению магнитного поля статора. На конце вала ротора двигателя укреплен магнитный узел 2 с шестью парами постоянных магнитов, между полюсами которых расположен чувствительный элемент 8. При вращении магнитного узла в чувствительном элементе индуцируются вихревые токи. В результате взаимодействия вихревых токов с магнитным полем магнитного узла создается вращающий момент чувствительного элемента. Вращающему моменту чувствительного элемента противодействует спиральная пружина 7, — один конец которой укреплен на оси чувствительного элемента, другой — неподвижен. Так как момент спиральной пружины пропорционален углу ее закручивания, то угол поворота чувствительного элемента пропорционален частоте вращения магнитного узла, и соответствует частоте вращения вала двигателя. На другом конце оси чувствительного элемента укреплена стрелка 5, показывающая по равномерной шкале 4 измерителя частоту вращения вала двигателя.

Для повышения устойчивости стрелки и улучшения отсчета показаний прибора применено демпфирование подвижной системы измерителя. При движении подвижной системы магнитный поток магнита 6 наводит в алюминиевом диске 3 вихревые токи, которые взаимодействуют с магнитным полем магнитов, и в подвижной системе возникает тормозящий момент. Ротор состоит из двух постоянных магнитов 13 и трех гистерезисных дисков 14, соединенных вместе. Взаимодействие ротора с магнитным полем статора — определяется взаимодействием магнитных полей постоянных магнитов статора и гистерезисных дисков.

Электрические тахометры

Электрические тахометры служат для дистанционного контроля направления и частоты вращения валов в диапазоне до 1500 об/мин. Датчиками в них служат тахогенераторы — миниатюрные генераторы переменного или постоянного тока, вырабатывающие напряжение, пропорциональное частоте вращения вала. Указателями являются магнитоэлектрические вольтметры со шкалой, градуированной в единицах частоты вращения.

В тахометре (рис. 4, а) тахогенератор 3 постоянного тока, приводимый во вращение от вала через цепной привод 2, является датчиком частоты вращения вала 1. К нему может быть подключено до восьми указателей — вольтметров 4 постоянного тока, размещенных по судну. Передаточное отношение от вала 1 к датчику определяется соотношением числа зубьев звездочек цепного привода и должно быть таким, чтобы номинальные частоты вращения вала и якоря датчика совпадали. Если при номинальной частоте вращения вала напряжение, вырабатываемое датчиком, не равно (30±0,1) В, то необходимо корректировать положение магнитного шунта. При правом и левом вращении якоря с номинальной частотой разность напряжений не должна превышать 0,1 В. В противном случае, необходимо корректировать нейтральное положение траверсы щеткодержателей.

В электрическом генераторе переменного тока 5 (рис. 4, б), ротором является постоянный магнит 7, установленный неподвижно на валу, а статором — стальные неподвижные полосы 6. Тахогенераторы постоянного тока вместо обмоток возбуждения имеют постоянные магниты. В результате большого количества ламелей коллектора и особых форм вырезов канавок вырабатывается постоянное напряжение с небольшими пульсациями, которое пропорционально частоте вращения. Преимущество датчиков постоянного тока — получение поляризованного напряжения, т. е. одновременно определяется и направление вращения; недостаток — сбои в работе коллектора. Передача от вала должна быть без скольжения (шестеренчатая, цепная). В тахогенераторах переменного тока это возможно только при наличии двух обмоток со сдвигом фаз 90°. Переменное напряжение должно быть выпрямлено в мостиковой схеме. Разность напряжений обоих гальванически разделенных контуров измеряется прибором с двумя поворотными катушками. Напряжение на выводах тахогенератора зависит от количества подключенных показывающих приборов. Поэтому в корпусе тахогенератора устанавливается нагрузочный резистор, который можно включать или выключать. Имеется также резистор для поднастройки показаний.

Счетчики оборотов

Для суммирования числа оборотов вала двигателя или механизма применяют специальные счетчики оборотов. Упрощенная принципиальная схема дистанционного электромеханического счетчика представлена на рис. 5.

На валу 9 жестко закреплены храповое колесо 5 и цифровой барабан 7, а цифровые барабаны 6 свободно насажены на вал. Барабаны кинематически соединены между собой так, что при полном обороте каждого из них соседний слева разворачивается на 1/10 оборота. На каждый барабан нанесены цифры от 0 до 9. Таким образом обеспечивается десятичная система отсчета. Число читается в рамке прибора 8. Колесо 5 входит в зацепление с храповиком 3, который в одну сторону перемещается под действием пружины 4, а в другую — якорем 2 электромагнитной катушки 1. Катушка получает питание Uп от сети через герметичные контакты выключателя 13. В выключателе на пластинчатой пружине с контактом закреплен постоянный магнит 12. Выключатель крепится к корпусу двигателя таким образом, чтобы между якорем 12 и стальным штифтом 10 вала 11 был установлен зазор, обеспечивающий притягивание якоря и замыкание цепи питания катушки 1.

Широко распространены магнитоуправляемые контакты (герконы). Прибор представляет собой две тонкие пермалоевые пластины с небольшим зазором между концами, впаянные в стеклянную колбу, из которой выкачан воздух (в некоторых приборах колбу заполняют инертным газом). При появлении вблизи геркона магнитного поля постоянного или электрического магнита происходит взаимное притягивание (прогиб) пластин и замыкание контактов. Постоянный магнит крепится на вращающемся валу 11 вместо штифта 10.

При каждом обороте вала независимо от направления его вращения катушка 1, получив питание, втягивает якорь 2 и смещает храповик 3 на один зуб колеса 5. При обесточивании катушки храповик под действием пружины 4 смещается в первоначальное положение, разворачивает колесо 5, вал 9 и барабан 7 на 1/10 оборота, что приводит к изменению показаний счетчика на одну единицу. Через один оборот барабана 7 соседний барабан 6 разворачивается на 1/10 оборота, отсчитав 10 оборотов вала 11, и т. д.

ИК датчик в счетчике оборотов двигателя

Для станка ЧПУ приобрел мотор шпиндель с регулировкой оборотов.
Радиолюбительский зуд не давал покоя — захотелось иметь на станочке показометр оборотов. Вариант с оптическим энкодером показался слишком сложным. Датчика холла, который применяется во всех автомобилях, не было под рукой. И тут на одном форуме подкинули идейку — попробовать ИК сенсор. Как раз без дела лежал ИК датчик препятствий, который не знал куда применить. Решил его попробовать — результат под катом.

Данный модуль применяется в основном в ардуинщиками в роботостроительстве как ИК датчик препятствия. Представляет маленькую очень бюджетную платку (особенно если покупать партиями штук по 10)

Схема у этого сенсора очень простая

В основе лежит ИК пара диод-транзистор. Что вроде L-53P3C/L-53F3C работающие в диапазоне 940нм
Компаратор LM393 сравнивает уровень фоторанзистора с уровнем, выставляемым подстроечным резистором.
Подцепил к валу шпинделя кусочек фольги, поднес сенсор к валу, покрутил подстроечник — модуль стал моргать светодиодом в так вращения.

Поковырявшись в своей барахолке нашел ATmega328 в DIP корпусе и четырехразрядный семисегментный индикатор
Максимальная скорость вращения у мотора 12000RPM и лучше было бы применить 5-разрядный индикатор, но будем работать с чем имеем
Накидал такую схему

Порядок подключения выводов индикатора к микроконтроллеру значения не имеет (так как настраивается в программе) и обусловлен исключительно из удобства проектирования печатной платы

«Квадратный» дизайн платы потому что на данном этапе я осваивал изготовление печатных плат на станке ЧПУ
Закругленные полигоны сложнее, а главное, дольше выбирать гравировкой.
Основным достоинством изготовления плат на станке является то, что весь процесс происходит не отрывая зада от кресла. С покупкой ламинатора я отказался от этого метода, оставив для станка сверление отверстий и обрезку плат.
Итак гравируем, сверлим, режем



И вот можно отлаживать готовую плату

Читайте также  Схема охлаждения двигателя ниссан примера р11







Для работы индикатора применяется простая и удобная библиотека SevSeg, позволяющая подключать индикатор к каким угодно выводам МК, применять индикаторы как с общим катодом, так и анодом да еще и яркостью управлять.
Для измерения частоты попробовал библиотеку FreqMeasur. МК с ней отлично мерит сигнал с генератора от 10 до 200Гц (а больше мне и не нужно)


А вот когда на вход контроллера подал с сигнал с сенсора, результат получился плачевным.
Частота прыгала как ненормальная. Виной этому оказался «дребезг» сигнала с оптического датчика. Фольга давала массу помех. Попытка настроить сигнал подстроечником или заменить кусочек фольки на другой не дали ощутимого результата.
Тогда я решил давить «дребезг» программно. Осциллограф показал, что помехами являются импульсы в 0.3 — 1 мкс, тогда как сигнал — это импульсы 5мс (При частоте 12000RPM) и больше.

Программа показала 100% результат с тестового генератора. При включенном моторе с сенсора показывались стабильные обороты, которые хорошо коррелировали с режимом работы мотора. На том и остановимчя



Еще одна проблема нартсовалась при выборе места установки счетчика на станок.
В длинных проводах наводились сильные помехи от мотора и БП и индикатор, отлично работавший «на коленках» никак не хотел работать на станке. В результате смонтировал контроллер в непосредственной близости от сенсора и запитал его через импульсный DC-DC преобразователь от 24В. (Напряжения для шаговиков, подсветки, вентиляторов охлаждения).


Так мой новый станочек обзавелся счетчиком оборотов шпинделя. индикаторы К слову, данный измеритель должен практически без изменения схемы и программы заработать и с «кошерным» датчиком холла и магнитиком на валу.

Пока собирал станок, приехали 5-ти разрядные индикаторы. Хотел переделать измеритель скорости вращения на них с более компактным Atmega8 в TQFP32. Но потом решил, что лучшее — враг хорошего.






Но это уже другая история

Следующий обзор я посвящу контроллеру станка, его доработке и настройке.
Весь мой путь от старого к новому станку есть в моем блоге.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector